scholarly journals Ferrocement Panels Under Flexure By Partial Replacement of Cement With Marble Powder.

Ferrocement is largely used material in today’s modern structural engineering technology. In this case study the main aim is to study flexural behavior of ferrocement by replacing cement content by 5%. In this study, 40 cubes were tested to get desirable compression strength results and engineering properties input data. Various test specimens in the form of ferrocement plate of sizes (400x200x15) mm, (500x200x20) mm, (600x200x25) mm, (800x200x30) mm and tested analytically with three-point loading with linearly varying load. Equivalent stress and deflection are the main parameters of this study. From the results, it can be concluded that 5%replacement of marble powder and increasing number of layers has proven to be good at increasing strength and reducing deflections

2016 ◽  
Vol 30 (22) ◽  
pp. 2405-2419 ◽  
Author(s):  
Aboubakeur Boukhelkhal ◽  
Lakhdar Azzouz ◽  
Akram Salah Eddine Belaïdi ◽  
Benchaa Benabed

2012 ◽  
Vol 18 (S5) ◽  
pp. 75-76
Author(s):  
C. Costa ◽  
P. Marques ◽  
P. A. Carvalho

The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends.


2021 ◽  
Vol 1021 ◽  
pp. 21-34
Author(s):  
Zahraa Alaa M.A. Ali Khan ◽  
Zena K. Abbas

Roller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required f ‘c with accepted results for the other tests. M2 mix with SSP of 5% had achieved the highest results. The f ’c for sawed cubes of (10*10*10) cm had increased by 2.26% and 3.16% when tested in directions (ꓕ and //) to the direction of loading respectively. R results for sawed prisms of (38*10*10) cm had increased by 8.78% and 8.43% when tested on top and bottom faces respectively. The density had increased by 1.04% while the absorption and volume of permeable voids had decreased by 8.11% and 7.83% respectively. The UPV results had also increased by 2.44% and 0.81% for cubes and prisms respectively when compared to the control mix. M3 mix with SSP of 10% had also achieved satisfactory results when compared to the control mix.


Author(s):  
Adeniran Jolaade ADEALA ◽  
Olugbenga Babajide SOYEM

Expanded polystyrene (EPS) wastes are generated from industries and post-consumer products. They are non-biodegradable but are usually disposed by burning or landfilling leading to environmental pollution. The possibility of using EPS as partial replacement for fine aggregates in concrete has generated research interests in recent times. However, since the physical and mechanical properties of EPS are not like those of conventional fine aggregates, this study is focussed on the use of EPS as an additive in concrete while keeping other composition (sand and granite) constant. Expanded polystyrene was milled, the bulk density of EPS was 10.57kg/m3 and particle size distributions were determined. Engineering properties of expanded polystyrene concrete were determined in accordance with BS 8110-2:1985. The result showed that the amount of expanded polystyrene incorporated in concrete influence the properties of hardened and fresh concrete. The compressive strengths of 17.07MPa with 5 % expanded polystyrene concrete at 28 days for example can be used as a lightweight concrete for partitioning in offices. Incorporating expanded polystyrene granules in a concrete matrix can produce lightweight polystyrene aggregate concrete of various densities, compressive strengths, flexural strengths and tensile strengths. In conclusion, this reduces environmental pollution, reduction in valuable landfill space and also for sustainability in construction companies


2017 ◽  
Vol 13 ◽  
pp. 93
Author(s):  
Zdeněk Prošek ◽  
Jaroslav Topič

This article focus on “blended cement”. The blended cement was created by using waste marble powder (WMP) as a partial replacement for cement. We investigated the influence of WMP on the developing of the dynamic modulus of elasticity and the dynamic shear modulus in time. Four different cement composites with WMP as a partial replacement for cement were studied (5, 10, 15 and 50 wt. %) together with reference samples. Dynamic modulus of elasticity was monitored during the first 377 days since manufacture by use of non-destructive testing (resonance method). The results showed that WMP in a small amount had a no effect on the dynamic modulus of elasticity and the dynamic shear modulus.


Author(s):  
Łukasz Majewski ◽  
Roman Jaskulski ◽  
Wojciech Kubissa

The article presents the results of testing the effect of partial replacement of sand with fine copper slag waste on the thermal properties of hardened concrete. The impact of the replacement on mechanical properties (ie. compressive and tensile strength of concrete) was also investigated. The thermal properties of the concrete were determined using the non-stationary method with the ISOMET 2114 device. Tests were performed on concrete containing three different types of cement (CEM I, CEM II and CEM III). A total cement content of 360 kg/m3 was assumed in the compositions of all concrete mixes with a water-cement ratio of 0.45. Replacing 66% of the sand volume with copper slag waste caused a decrease in thermal conductivity by about 4–8% in relation to the reference concrete. In addition, the compressive strength of concrete containing copper slag increased by about from 4–21% in relation to the reference concrete.


2014 ◽  
Vol 1611 ◽  
pp. 1-6
Author(s):  
F. J. Baldenebro-Lopez ◽  
J. H. Castorena-Gonzalez ◽  
J. A. Baldenebro-Lopez ◽  
J.I. Velazquez-Dimas ◽  
J. E. Ledezma-Sillas ◽  
...  

ABSTRACTThe increasing use of polymeric reinforcements in concrete structures requires either the development of a new design theory or the adaptation of current designs considering the engineering properties of this type of materials. In this work a method for calculating the deflections of reinforced concrete elements is proposed, which can be used in predicting the flexural behavior of longitudinally reinforced concrete with PET strips in amounts up to 1%. The model theory assumes that concrete has a tensile load capacity different to zero, characterized by a uniaxial tensile stress-strain diagram. A series of tests were conducted to corroborate the validity of the suggested method, showing that the theory also correctly predicts the creep deformation post-cracking. The deflection results of reinforced concrete with recycled PET strips are presented. The tests are carried out by a simple beam with center-point loading, using three different amounts of reinforcement and comparing the experimental results with the theoretical results of the proposed model.


2018 ◽  
Vol 149 ◽  
pp. 01026
Author(s):  
Taieb Fatima ◽  
Belas Nadia ◽  
Belaribi Omar ◽  
Belguesmia Khalil ◽  
Hadj Sadok Rachid

The use of SCC has a particular interest in terms of sustainable development. Indeed, their specific formulation leads to a greater volume of dough than for common concretes, thus, a larger quantity of cement. However, for economical, ecological and technical reasons, it is sought to limit their cement content [1]. It is therefore necessary to almost always use mineral additions as a partial replacement for cement because the technology of self-compacting concretes can consume large quantities of fines, in this case calcinated mud issued from dams dredging sediments that can give and/or ameliorate characteristics and performances of this type of concretes. Four SCCs had been formulated from the same composition where the only percentage of calcinated mud of Chorfa (west of Algeria) dam changed (0%, 10%, 20% and 30%). The effect of calcinated mud on characteristics at fresh state of SCC according to AFGC was quantified. Mechanical strengths and shrinkage deformation (total, autogenous, drying) were evaluated. The results show the possibility to make SCCs with different dosages of calcinated mud having strengths that can defy those of the control SCC. The analysis of free deformations indicates the beneficial impact of the mud by contributing to decrease the amplitudes of the shrinkage compared to those of the control SCC.


Sign in / Sign up

Export Citation Format

Share Document