scholarly journals Influence of partial replacement of sand with copper slag on the thermal properties of hardened concrete

Author(s):  
Łukasz Majewski ◽  
Roman Jaskulski ◽  
Wojciech Kubissa

The article presents the results of testing the effect of partial replacement of sand with fine copper slag waste on the thermal properties of hardened concrete. The impact of the replacement on mechanical properties (ie. compressive and tensile strength of concrete) was also investigated. The thermal properties of the concrete were determined using the non-stationary method with the ISOMET 2114 device. Tests were performed on concrete containing three different types of cement (CEM I, CEM II and CEM III). A total cement content of 360 kg/m3 was assumed in the compositions of all concrete mixes with a water-cement ratio of 0.45. Replacing 66% of the sand volume with copper slag waste caused a decrease in thermal conductivity by about 4–8% in relation to the reference concrete. In addition, the compressive strength of concrete containing copper slag increased by about from 4–21% in relation to the reference concrete.

Author(s):  
Wojciech Kubissa ◽  
Roman Jaskulski

In the article the possibility of using surface blast-cleaning waste (copper slag based) as a replacement of fine aggregate in high performance concrete manufacturing was presented. Concrete with w/c ratio 0.45 and 360 kg/m3 dosage of cements: CEM I 42.5R, CEM II/B-V 42.5N and CEM III/A 42.5N was tested. The consistency measured in table flow test was assumed as 420 ± 30 mm so superplasticizer was used. The replacement rate of the fine aggregate 0–2 mm with the copper slag (CS) waste was 66 %. Concrete mixtures with sand served as reference. The performed tests focused on: compressive and tensile strength (both after 28 days), sorptivity, free water absorption capacity, Torrent air permeability, and chloride ingress depth after salt fog treatment. A freeze resistance test was also carried out according to PN-B-06265. The obtained results showed that the strength and some other tested properties of concrete mixtures with copper slag waste were similar or better than those of the mixtures with sand. The results of the tests indicate that the concrete with copper slag waste is more tight than the concrete with sand and therefore is more durable.


2007 ◽  
Vol 13 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Marta Kosior-Kazberuk ◽  
Małgorzata Lelusz

Based on experimental results, mathematical models were elaborated to predict the development of compressive strength of concrete with fly ash replacement percentages up to 30 %. Strength of concrete with different types of cement (CEM I 42.5, CEM I 32.5, CEM III 32.5), after 2, 28, 90, 180 days of curing, have been analysed to evaluate the effect of addition content, the time of curing and the type of cement on the compressive strength changes. The adequacy of equations obtained was verified using statistical methods. The test results of selected properties of binders and hardened concrete with fly ash are also included. The analysis showed that concrete with fly ash is characterised by advantageous applicable qualities.


Author(s):  
Joseph A. Ige ◽  
Mukaila A. Anifowose ◽  
Samson O. Odeyemi ◽  
Suleiman A. Adebara ◽  
Mufutau O. Oyeleke

This research assessed the effect of Nigerian rice husk ash (RHA) and calcium chloride (CaCl2) as partial replacement of cement in concrete grade 20. Rice husk ash (RHA) is obtained by combustion of rice husk in a controlled temperature. The replacement of OPC with rice husk ash (RHA) were 0%, 5%, 10%, 15% and 20%. 1% of Calcium Chloride was blended with OPC/RHA in all the test specimens except from control mix. Concrete cubes of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14 and 28 days respectively. Slump test was conducted on fresh concrete while density test and compressive strength test were conducted on hardened concrete. The slump results revealed that the concrete becomes less workable (stiff) as percentage increases. The compressive strength result at 28 days revealed that 5%RHA/1%CaCl2 have the highest strength of 26.82N/mm2 while 20%RHA/1%CaCl2 have the lowest strength (21.48N/mm2). Integration of 5%RHA/1%CaCl2 and 10%RHA/1%CaCl2 as cement replacement will produce a concrete of higher compressive strength compared to conventional concrete in grade 20 concrete.


River sand is the standard form of fine aggregate used in the concrete production. In this present era of rapid urbanization, to meet the increasing demand of natural sand by the construction industry, massive scale depletion of the river bed is being carried out which is causing a considerable negative impact on our environment. Hence it is highly imperative to find sustainable fine aggregates to meet the global demand without disturbing our ecosystem. Copper slag is one such sustainable material which has a promising future to be used as an alternative to river sand. This paper presents a study on finding the optimum dosage of copper slag (CS) as partial replacement sand in preparation of concrete. Further, as part of durability study, the impact of elevated temperature of 2000 C, 4000 C and 6000 C for 4 hours exposure period on strength characteristics of copper slag blended concrete has been presented and been compared with that of normal concrete. The results indicate that copper slag concrete has excellent resistance to weight and strength loss at an elevated temperature of 2000 C, 4000 C compared to normal concrete however at 6000 C copper slag concrete shows similar trends like normal concrete. In the present experimental study, M20 & M30 concrete grades were used.


Concrete plays an important role in every construction. This paper is an experimental investigation to study the mechanical properties of the concrete with partial replacement of cement by dolomite powder and fine aggregate by copper slag. So, in this investigation, by usage of Dolomite powder in concrete on one side improves density and other side improves strength and hardness. Copper slag also increases density of concrete and toughness of concrete. The cement content replaced with dolomite and fine aggregate replaced with copper slag from 5% to 25% at regular intervals of 5%. In the designed mix proportion of M30 grade concrete is 1:2.17:2.95. The Superplasticizer Master Rheobuild 920SH of 0.5% dosage used as chemical admixture is added to the concrete to maintain 0.45 the water-cement ratio. The concrete cubes, cylinders were casted. The different mechanical properties like compressive strength, split tensile strength, flexural strength were tested after 3 days, 7 days and 28 days of curing from 5 to 25% at regular intervals of 5% replacement of cement with dolomite powder and 10% to 50% at regular intervals of 10% replacement of fine aggregate with copper slag.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1166 ◽  
Author(s):  
Francisca Perez-Garcia ◽  
Maria Eugenia Parron-Rubio ◽  
Jose Manuel Garcia-Manrique ◽  
Maria Dolores Rubio-Cintas

This paper is part of a research line focused on the reduction of the use of cement in the industry. In this work, the study of work methodologies for the manufacture of green cementitious grout mixtures is studied. Grout is widely used in construction and it requires an important use of raw materials. On the other hand, the steel industry faces the problem of the growing generation of slag wastes due to the increase in steel manufacturing. The green grout aims to achieve the dual objective of reducing the demand for cement and improve the slag waste valorization. Slag is not introduced as an aggregate but through the direct replacement of cement and no additives. The research seeks a product where we can use steel slag intensively, guaranteeing minimum resistance and workability. Results with substitutions between a 25% to 50% and water/cement ratio of 1 are presented. In particular, the suitability of different slags (two Ladle Furnace Slag (LFS) and one Blast Furnace Slag (GGBS)) in the quality of the final product are analyzed. The feasibility of replacing cement with slag and the importance of the origin and pretreatment are highlighted.


2020 ◽  
Vol 3 (2) ◽  
pp. 29-35 ◽  
Author(s):  
G. Medvedeva ◽  
A. Lifant'eva A.F.

the most important direction of resource saving in construction is the widespread use of secondary material resources, which are waste products. The use of secondary products of industry as raw materials for the production of various building materials is very important, because it provides production with rich sources of cheap and, often, already prepared raw materials; lead to lower costs for the production of some building materials, and therefore saves capital investments intended for the construction of buildings and structures; release large areas of land and reduce the impact on the environment. The article deals with heat-insulating and structural-heat-insulating materials, with partial replacement of components by ash-slag waste (ASW): lightweight concretes with broken glass and concretes modified with sulfur. Properties of concretes modified with sulfur are investigated: compressive strength, density and thermal conductivity. In accordance with the obtained properties, a comparative characteristics of the received materials with existing building materials was carried out: sulfur modified concrete and lightweight concrete; lightweight concrete using broken glass and claydite-concrete. Thermophysical calculation of multilayer hencing is made. In each of the options, one of the following materials was selected as a structural and heat-insulating material: lightweight concrete using broken glass and sulfur modified concrete. Also, for each type of hencing, the necessary heat-insulating and structural materials were selected. In the economic part, the cost of the raw materials necessary to obtain 1 m3 of the investigated materials and the cost of 1 m3 of multilayer hencing, which includes the investigated concrete, are calculated.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 443
Author(s):  
USHAKRANTI J ◽  
SRINIVASU K ◽  
NAGA SAI

Currently situation, improvement of infrastructure has created an excessive demand for herbal sand, which makes it greater expensive and leads to environmental imbalances. The utilization of suitable sustainable choice materials proves that it is the most efficacious choice to traditional concrete materials and can take care of the surrounding environment. Copper slag is an industrial byproduct of copper production. Copper slag is a high-gravity glassy granular material. This paper reports some experimental studies on the outcome of partially changed sand from impact of copper slag on the mechanical houses of concrete. M30 concrete adopts copper slag plan and partly substitutes high-quality combination fines by means of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80% and 100%. The mechanical properties of concrete measured in the laboratory encompass compressive strength, split tensile strength and bending tensile strength. The have an impact on of partly replacing the quality aggregates with copper slag on the compressive strength, the cut up tensile power of the cylinder and the bending power of the prism has been evaluated. Water absorption assessments have been also conducted to report the impact of copper slag on the absorption price of concrete. Test results affords that it is feasible to utilize copper slag as best aggregate in concrete. 


2018 ◽  
Vol 7 (2) ◽  
pp. 63 ◽  
Author(s):  
Bassam A. Tayeh

Waste materials, such as glass, marble, and timber, are pressing environmental problems worldwide, and their environmental impact can be best overcome by reusing them. This research mainly aims to determine the impact of using waste materials, such as crushed glass, crushed marble, and burned wood in powder form, as partial replacements for cement on the compressive strength of concrete. Mechanical properties (e.g., compressive strength) and physical properties (e.g., workability and unit weight) were investigated. The powdered waste materials (after passing through sieve #200) were partially replaced with cement by ratios of 10%, 20%, and 30%. Compressive strength was tested on the 7th, 28th, and 56th days. Results showed that workability decreased as the partial replacement level of glass powder, marble powder, and timber ash increased. The results also showed a decrease in the compressive strength of concrete when the replacement level was increased from 10% to 30% for each waste material.


Sign in / Sign up

Export Citation Format

Share Document