scholarly journals Third Party Based Security Method in Vehicular AD-HOC Networks

Security is the key factor of consideration in the vehicular ad-hoc network (VANET), which is prone to various security dangers. A VANET package gives information on life’s essentials and provides security from detrimental external agencies. This paper presents an outsider-based security approach which secures VANETs condition by verification process, where marks are produced and conveyed to hubs and checked at the measure of any transmission. In the suggested approach, the rise in mobility decreases the packet delivery ratio and performance of proposed protocol is approximately 4% improved as compared to other techniques. Moreover, the escalation in mobility increases the average delay and in case proposed protocol is compared with the group based authentication then the improvement in its performance is approximately 50%.Thus, the proposed approach is completely focused on security and consequently secures the system.

2020 ◽  
Vol 9 (1) ◽  
pp. 2268-2273

One of the key enablers of the evolving 5G technology are Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). The development of next generation intelligent vehicular networks includes integration of SDN in Vehicular Ad hoc Networks (VANETs). Researchers have focused on the development of the integrated technology including architecture and benefits of SDN based VANET services. In this paper we have simulated the Vehicular Ad hoc Networks (VANETs) using Mininet-wifi. The VANET is incorporated with SDN controller. The performance is evaluated by varying the speed of vehicles. We have evaluated the performance in two ways: performance evaluation of V2V communication in same RSU and performance evaluation of V2V communication from different RSU. We have evaluated the proposed system for POX and RYU SDN OpenFlow controllers. As demonstrated in the results the RYU controller of SDN performs better as compared to POX controller in terms of average delay and throughput.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Priyanka Bharadwaj ◽  
Surjeet Balhara

Background & Objective: There are some challenging issues such as providing Quality of Service (QoS), restricted usage of channels and shared bandwidth pertaining to ad-hoc networks in a dynamic topology. Hence, there is a requirement to support QoS for the application environment and multimedia services in ad-hoc networks with the fast growing and emerging development of information technology. Eventually, bandwidth is one of the key elements to be considered. Methods: Energy aware QoS routing protocol in an ad-hoc network is presented in this article. Results and Conclusion: The simulation results indicate that the improved protocol outperforms Adhoc On-Demand Distance Vector (AODV) routing protocol in terms of QoS metric such as throughput, packet delivery ratio, loss rate and average delay.


2012 ◽  
Vol 6 (1) ◽  
pp. 33-56 ◽  
Author(s):  
Pei-Yuan Shen ◽  
Maolin Tang ◽  
Vicky Liu ◽  
William Caelli

Current research in secure messaging for Vehicular Ad hoc Networks (VANETs) focuses on employing a digital certificate-based Public Key Cryptosystem (PKC) to support security. However, the security overhead of such a scheme creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes a non-certificate-based public key management for VANETs. A comprehensive evaluation of performance and scalability of the proposed public key management regime is presented, which is compared with a certificate-based PKC by employing a number of quantified analyses and simulations. In this paper, the authors demonstrate that the proposal can maintain security and assert that it can improve overall performance and scalability at a lower cost, compared with certificate-based PKC. The proposed scheme adds a new dimension to key management and verification services for VANETs.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881505 ◽  
Author(s):  
Ishtiaq Wahid ◽  
Ata Ul Aziz Ikram ◽  
Masood Ahmad ◽  
Fasee Ullah

With resource constraint’s distributed architecture and dynamic topology, network issues such as congestion, latency, power awareness, mobility, and other quality of service issues need to be addressed by optimizing the routing protocols. As a result, a number of routing protocols have been proposed. Routing protocols have trade-offs in performance parameters and their performance varies with the underlying mobility model. For designing an improved vehicular ad hoc network, three components of the network are to be focused: routing protocols, mobility models, and performance metrics. This article describes the relationship of these components, trade-offs in performance, and proposes a supervisory protocol, which monitors the scenario and detects the realistic mobility model through analysis of the microscopic features of the mobility model. An analytical model is used to determine the best protocol for a particular mobility model. The supervisory protocol then selects the best routing protocol for the mobility model of the current operational environment. For this, EstiNet 8.1 Simulator is used to validate the proposed scheme and compare its performance with existing schemes. Simulation results of the proposed scheme show the consistency in the performance of network throughout its operation.


Author(s):  
TEJAL ARVIND SONAWALE ◽  
SHIKHA NEMA

Ad Hoc Networks face a lot of problems due to issues like mobility, power level, load of the network, bandwidth constraints, dynamic topology which lead to link breaks, node break down and increase in overhead. As nodes are changing their position consistently, routes are rapidly being disturbed, thereby generating route errors and new route discoveries. The need for mobility awareness is widely proclaimed. In our dissertation we present a scheme AOMDV-APLP that makes AOMDV aware of accessibility of neighbor nodes in the network. Nodes acquire the accessibility information of other nodes through routine routing operations and keep in their routing table. Based on this information route discovery is restricted to only “accessible” and “start” nodes. Further route with the strongest signal strength is selected from multiple routes using Link life value predicted by Link Breakage prediction technique. Simulation result shows that using accessibility and link life knowledge in route discovery process MAC overhead, routing overhead and average delay is reduced 3 times, and improve the Packet delivery ratio to a large extent than standard AOMDV which reflects effective use of network resources.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Muhammad Bilal Latif ◽  
Feng Liu ◽  
Kai Liu

An autonomous driving environment poses a very stringent requirement for the timely delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access (TDMA)-based medium access control (MAC) protocols are considered a promising solution because of their time-bound message delivery. However, in the event of mobility-caused packet collisions, they may experience an unpredicted and extended delay in delivering messages, which can cause catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions. One vehicle in the merging collisions retains the time slot, and the others release the slot. The common neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to avoid further access collisions. Simulation results show that the proposed protocol reduces packet loss more than the existing methods. Consequently, the average delay between the successfully delivered periodic messages is also reduced.


Author(s):  
Mannat Jot Singh Aneja ◽  
Tarunpreet Bhatia ◽  
Gaurav Sharma ◽  
Gulshan Shrivastava

This chapter describes how Vehicular Ad hoc Networks (VANETs) are classes of ad hoc networks that provides communication among various vehicles and roadside units. VANETs being decentralized are susceptible to many security attacks. A flooding attack is one of the major security threats to the VANET environment. This chapter proposes a hybrid Intrusion Detection System which improves accuracy and other performance metrics using Artificial Neural Networks as a classification engine and a genetic algorithm as an optimization engine for feature subset selection. These performance metrics have been calculated in two scenarios, namely misuse and anomaly. Various performance metrics are calculated and compared with other researchers' work. The results obtained indicate a high accuracy and precision and negligible false alarm rate. These performance metrics are used to evaluate the intrusion system and compare with other existing algorithms. The classifier works well for multiple malicious nodes. Apart from machine learning techniques, the effect of the network parameters like throughput and packet delivery ratio is observed.


Author(s):  
P. Subathra ◽  
S. Sivagurunathan

A Mobile Ad hoc Network (MANET) is a collection of wireless nodes communicating over multi-hop paths without any infrastructure. Nodes must cooperate to provide necessary network functionalities. The security in routing protocols like Dynamic Source Routing (DSR) can be compromised by a “Black Hole” attack. Here, a malicious node claims to have the shortest path to the destination and attracts all traffic and drops them, leading to performance degradation. The situation becomes worse when two or more nodes cooperate and perform the “Cooperative black hole” attack. This chapter proposes a solution based on probing to identify and prevent such attacks. The proposed solution discovers a secure route between the source and destination by identifying and isolating the attacking nodes. Simulation results show that the protocol provides better security and performance in terms of detection time, packet delivery ratio, and false negative probability in comparison with trust and probe based schemes.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3061 ◽  
Author(s):  
Sunghwa Son ◽  
Kyung-Joon Park

To improve vehicle safety, vehicular ad hoc networks (VANETs) periodically broadcast safety messages known as beacons. Consequently, it becomes safety critical to guarantee the timely reception of periodic beacons under the time-varying environments of VANET. However, existing approaches typically measure the packet delivery ratio, which is a time-average metric that does not consider the temporal behavior associated with beacon reception. In this paper, to properly reflect the temporal aspect of beacon reception, we propose a congestion control algorithm, Beacon inter-reception time Ensured Adaptive Transmission (BEAT). The proposed algorithm tightly regulates the beacon inter-reception time compared to conventional techniques, which can significantly improve vehicle safety. Our simulation results demonstrate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document