scholarly journals Trust Management Based Improved Mechanism to Prevent MANET from Security Threats Using Optimized SVM

A temporal network creates various issues which are managed by nodes, communicating with the base station. The flow of packets with different routes usually attacked by malicious nodes, such an attack is also termed as black hole attack. A novel FSAODV mechanism is proposed in this paper to prevent the information from malicious nodes by following the Ad-hoc on demand distance vector (AODV) protocol. The detection of threats due to the black hole and route enhancement is implemented using the bio-inspired algorithms. Firefly algorithm and Support Vector Machine (SVM) algorithms are developed to determine the throughput, Packet Delivery Ratio (PDR), and TDR. A comparative analysis has been done to portray the success rate of proposed work. For the comparison, research works of Ashok Koujalagi and Rushdi A. Hamamreh are considered. 33.33% enhancement has been noted in throughput with Ashok Koujalagi and74.44% with Rushdi A. Hamamreh. 21.4% enhancement has been seen in PDR with Ashok Koujalagi and 91.71% with Rushdi A. Hamamreh.

2019 ◽  
Vol 8 (2) ◽  
pp. 5799-5805

Cloud networks are very widespread and unreliable because of the amount of VMs and presented nodes in their Virtual Cloud Network. Nodes might connect and revoke networks at any time. Resilience is a advantage of cloud computing, but it has many safety issues in routing and transmitting information between messages. VCN research is very similar to the portable ad-hoc network (MANET), which depends on the collaboration of all involved nodes to provide fundamental activities. Many safety assaults and risks exploit the safety of information transmission due to the decentralized environment in VCN and MANET. Malicious nodes can interfere and use information during wireless communications. Numbers of methods are there that has a diverse effect on such attacks for malicious nodes. Varied attacks are susceptible to security, but Black hole assault is one of the most common effective assaults, as fraudulent nodes dump all incoming emails reducing network performance and reliability. A black hole node is designed to lampoon every node in the network that conveys with some other node by saying it always has the easiest route to the target node. In this manuscript, a secure routing discovery method has been presented using Ad hoc on demand distance vector (AODV) routing protocol. For the detection of attack in the cloud, the concept of Artificial Intelligence (AI) has been used. Therefore, in this research, Artificial Neural Network (ANN) and Support Vector Machine (SVM)is adapted to determine Packet Delivery Ratio (PDR), Delay and Throughput measures. The comparative examination has been conducted to depict the proposed FNN-AODV effectiveness. There is an enhancement of 61.01% in FNN-AODV and 5.08% enhancement in Throughput in proposed FNN-AODV than R-AODV, 6.26% enhancement in PDR for FNN-AODV than R-AODV and 10.8% is the decrement in delay in FNN-AODV than of R-AODV


Author(s):  
Atifa Parveen ◽  
Shish Ahmad ◽  
Jameel ◽  
Ahmad

Ad hoc Network is a self organized autonomous network that consists of mobile nodes which communicate with each other over wireless links. One of the common attacks in MANETs is the Black hole Attack, in which malicious node falsely claiming it to have the fresh and shortest path to the destination and then drops all the receiving packets. The black hole attack is one of the well-known security threats in wireless mobile adhoc networks. We proposed a mechanism to mitigate single black hole attack to discover a safe route to the destination by avoiding attacks. In this paper we proposed an approach for better analysis and improve security of AODV, which is one of the popular routing protocols for MANET. Our scheme is based on AODV protocol which is improved by deploying improved DRI table with additional check bit. The Simulation on NS2 is carried out and the proposed scheme has produced results that demonstrate the effectiveness of the mechanism in detection and elimination of the attack and improve network performance by reducing the packet dropping ratio in network. In this paper, We not only classify these proposals into single black hole attack but also analyze the categories of these solutions.


2017 ◽  
Vol 10 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Ashish Jain ◽  
Vrinda Tokekar

Mobile ad hoc network (MANET) possess self-configuration, self-control and self-maintenance capabilities. Nodes of MANET are autonomous routers. Hence, they are vulnerable to security attacks. Collaborative attacks such as black hole and wormhole in MANET are difficult to be detected and prevented. Trust based routing decision is an effective approach for security enhancement in MANET. In this study, trust computing using fuzzy based max-product composition scheme is applied to compute aggregated trust values to determine malicious nodes and thereby safe route in MANETs. The results show performance improvement of proposed protocol over AODV protocol. Network metrics are analysed under different mobility conditions and different positions of black hole nodes.


Author(s):  
J. Kaur ◽  
S. Kaur

Mobile Ad Hoc Networks (MANETs) are comprised of an arrangement of self-sorting mobile hosts furnished with wireless interaction devices gathered in groups without the need of any settled framework as well as centralized organization to maintain a system over radio connections. Every mobile node can react as a host and also, the router freely utilizes the wireless medium inside the correspondence range to deal with the interaction between huge quantities of individual mobile nodes by framing a correspondence system and trading the information among them without using any described group of the base station. A trust-based model in MANET estimates and sets up trust relationship among objectives. Trust-based routing is utilized to keep away data from different attackers like a wormhole, DOS, black-hole, selfish attack and so forth. Trust can be executed in different steps like reputation, subjective rationale and from the supposition of the neighboring node. A trust estimation approach not just watches the behavior of neighbor nodes, additionally it screens the transmission of the information packet in the identification of the route for exact estimation of trust value. A survey is carried out to find some of the limitations behind the existing works which has been done by the researchers to implement various approaches thus to build the trust management framework. Through the survey, it is observed that existing works focused only on the authenticated transmission of the message, how it transmits packets to the destination node securely using a trust-based scheme. And also, it is observed that the routing approach only focused on the key management issues. Certain limitation observed in the implemented approaches of existing work loses the reliability of framework. Thus, to withstand these issues it is necessary to establish a reliable security framework that protects the information exchanged among the users in a network while detecting various misbehaving attacks among the users. Confidentiality, as well as the integrity of information, can be secured by combining context-aware access control with trust management. The performance parameters should be evaluated with the previous works packet delivery ratio, packet drop, detection accuracy, number of false positives, and overhead.


Author(s):  
Yaesr Khamayseh ◽  
Muneer Bani Yassein ◽  
Mai Abu-Jazoh

<div class="WordSection1"><p>Security is a critical and challenging issue in MANET due to its open-nature characteristics such as: mobility, wireless communications, self-organizing and dynamic topology. MANETs are commonly the target of black hole attacks. These are launched by malicious nodes that join the network to sabotage and drain it of its resources. Black hole nodes intercept exchanged data packets and simply drop them. The black hole node uses vulnerabilities in the routing protocol of MANETS to declare itself as the closest relay node to any destination. This work proposed two detection protocols based on the collected dataset, namely: the BDD-AODV and Hybrid protocols. Both protocols were built on top of the original AODV. The BDD-AODV protocol depends on the features collected for the prevention and detection of black hole attack techniques. On the other hand, the Hybrid protocol is a combination of both the MI-AODV and the proposed BDD-AODV protocols. Extensive simulation experiments were conducted to evaluate the performance of the proposed algorithms. Simulation results show that the proposed protocols improved the detection and prevention of black hole nodes, and hence, the network achieved a higher packet delivery ratio, lower dropped packets ratio, and lower overhead. However, this improvement led to a slight increase in the end-to-end delay.</p></div>


Author(s):  
Gurwinder Singh

Abstract: Security in mobile ad-hoc network (MANET) is the most serious issue impacting performance of network. In general, routing methods is one of the complicated and exciting analysis places. In black hole attack, a harmful node uses its routing technique to be able to promote itself for having the quickest direction to the place node or to the bundle it wants to identify. In this research, performance of one of the most efficient solutions for preventing single black hole attack in MANET using AODV routing protocol will be investigated in terms of packet delivery ratio, packet loss percentage, average end-to-end delay, and route request overhead. This chapter describes the introduction, background of the study, research objectives and questions, the scope of the study and its primary objectives.


2019 ◽  
Vol 8 (3) ◽  
pp. 8192-8198

Mobile Ad hoc Networks is configured by itself using the Mobile nodes in the Network, the maintenance also done by the wireless nodes itself. Dynamic topology, hop-to-hop communication and open-to-all are the features of MANETS, but these features made security of network highly challengeable. From security concern, routing protocols are highly vulnerable to many security threats like black hole attack. In black hole attack malicious node generates false routing information to the path requests about the route it asked for, which results all data packets forward toward it-self by the source and the black hole node manipulate its data. The cooperative black hole nodes in the other hand cooperate within the malicious nodes to fool the single black hole attack prevention algorithms. Here an approach is proposed to detecting the cooperative black holes nodes and eliminate them by broad casting there information into the network.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

In the context of wireless technology, a secure communication is requisite for stopping the unauthorized access to the network services. This manuscripts aim is to detect and eliminate the malicious nodes involved during routing path formation in mesh environments by doing some amendments in basic AODV routing phenomenon. The proposed mechanism is further merged with previously proposed secure authentication and signature routing (SASR) protocol to address the security threats such as grey hole, black hole attacks and to recover the network metrics in terms of packet loss ratio, packet delivery ratio, computational time and network throughput. Further, the approach is simulated by computing the network throughput in both the scenarios i.e. with the involvement of malicious nodes and without involvement of malicious nodes. Moreover, we have validated the network metrics of proposed mechanism against conventional approaches.


2021 ◽  
Author(s):  
S. Sivanesh ◽  
V R Sarma Dhulipala

Abstract The decentralized administration and the lack of an appropriate infrastructure causes the MANET prone to attacks. The attackers play on the vulnerable characteristics of the MANET and its underlying routing protocols such as AODV, DSR etc to bring about a disruption in the data forwarding operation. Hence, the routing protocols need mechanisms to confront and tackle the attacks by the intruders. This research introduces the novel Host-based Intrusion Detection System (HIDS) known as Analytical Termination of Malicious nodes (ATOM) that systematically detects one of the most significant black hole attacks that affects the performance of AODV routing protocol. ATOM IDS performs detection by computing the RREP count (Route Reply) and the packet drop value for each individual node. This system has been simulated over the AODV routing protocol merged with the black hole nodes and the resultant simulation scenario in NS2 has been generated. The trace obtained shows a colossal increase in the packet delivery ratio (pdr) and throughput. The results prove the efficacy of the proposed system.


Author(s):  
Divya Singh ◽  
Sumit Jalan

In Wireless ad-hoc network, the infrastructure of MANET's differ to each other due to the topology of MANETs changes time to time because the mobile nodes of MANET's are movable. In MANETs protocols, if any node wants to communicate with another node then they establish a path with the help of adjacent node due to this the security in MANETs protocol is vulnerable. Thus, there are various types of attacks are try to break the security of MANETs protocol. AODV is a popular and most usable protocol of MANET and Black Hole Attack is a severe attack that affects the functionality of AODV protocol. The malicious node treat to the source node which have freshest and nearest path for the destination. In this work, my prime focus specifically is on follow the security against Black Hole Attack. I proposed AODV protocol capture some extra effort for source node and destination node which based on best possible effort (heuristic) with appropriate simulation using ns-2.35.


Sign in / Sign up

Export Citation Format

Share Document