scholarly journals Prognosis of Chronic Renal Syndrome by Classification and Progression Using Temporal Abstraction

Chronic renal syndrome is defined as a progressive loss of renal function over period. Analysers have make effort in attempting to diagnosis the risk factors that may affect the retrogression of chronic renal syndrome. The motivation of this project helps to develop a prediction model for level 4 CKD patients to detect on condition that, their estimated Glomerular Filtration Rate (eGFR) stage downscale to lower than 15 ml/min/1.73 m². End phase renal disease, after six months accumulating their concluding lab test observation by assessing time affiliated aspects. Data mining algorithm along with Temporal Abstraction (TA) are confederated to reinforce CKD evolvement of prognostication models. In this work a inclusive of 112 chronic renal disease patients are composed from April 1952 to September 2011 which were extracted from the patient’s Electronic Medical Records (EMR). The information of chronic renal patients are collected in a big spatial info-graphic data. In order to analyse these info-graphic data, it is significant to detect the issues affecting CKD deterioration and hence it becomes a challenging task. To overcome this challenge, time series graph has been generated in this project work based on creatinine and albumin lab test values and reports of the time period. The presence of CKD diagnostic codes are transformed into default seven digit default format of International Classification of Disease 10 Clinical Modification (ICD 10 CM). Feature selection is performed in this work based on wrapper method using genetic algorithm. It is helpful for finding the most relevant variables for a predictive model. High Utility Sequential Rule Miner (HUSRM) is used here to address the discovery of CKD sequential rules based on sequence patterns. Temporal Abstraction (TA) techniques namely basic TA and complex TA are used in this work to analyse the status of chronic renal syndrome patients. Classification and Regression Technique (CART) along with Adaptive Boosting (AdaBoost) and Support Vector Machine Boosting (SVMBoost) are applied to develop the CKD in which the progression prediction models exhibit most accurate prediction. The results obtained from this work divulged that comprehending temporal observation forward the prognostic instances has escalated the efficacy of the instances. Finally, an evaluation metrics namely accuracy, sensitivity, specificity, positive likelihood, negative likelihood and Area Under the Curve (AUC) are helps to evaluate the performance of the prediction models which are designed and implemented in this project. Key Words: CKD, progression, time series data, genetic algorithm, sequential rules, TA classification and prediction model.

Author(s):  
Guan-fa Li ◽  
Wen-sheng Zhu

Due to the randomness of wind speed and direction, the output power of wind turbine also has randomness. After large-scale wind power integration, it will bring a lot of adverse effects on the power quality of the power system, and also bring difficulties to the formulation of power system dispatching plan. In order to improve the prediction accuracy, an optimized method of wind speed prediction with support vector machine and genetic algorithm is put forward. Compared with other optimization methods, the simulation results show that the optimized genetic algorithm not only has good convergence speed, but also can find more suitable parameters for data samples. When the data is updated according to time series, the optimization range of vaccine and parameters is adaptively adjusted and updated. Therefore, as a new optimization method, the optimization method has certain theoretical significance and practical application value, and can be applied to other time series prediction models.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 103 ◽  
Author(s):  
Mengxing Huang ◽  
Qili Bao ◽  
Yu Zhang ◽  
Wenlong Feng

Financial prediction is an important research field in financial data time series mining. There has always been a problem of clustering massive financial time series data. Conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several financial forecasting models. In this paper, a new hybrid algorithm is proposed based on Optimization of Initial Points and Variable-Parameter Density-Based Spatial Clustering of Applications with Noise (OVDBCSAN) and support vector regression (SVR). At the initial point of optimization, ε and MinPts, which are global parameters in DBSCAN, mainly deal with datasets of different densities. According to different densities, appropriate parameters are selected for clustering through optimization. This algorithm can find a large number of similar classes and then establish regression prediction models. It was tested extensively using real-world time series datasets from Ping An Bank, the Shanghai Stock Exchange, and the Shenzhen Stock Exchange to evaluate accuracy. The evaluation showed that our approach has major potential in clustering massive financial time series data, therefore improving the accuracy of the prediction of stock prices and financial indexes.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 285
Author(s):  
Kwok Tai Chui ◽  
Brij B. Gupta ◽  
Pandian Vasant

Understanding the remaining useful life (RUL) of equipment is crucial for optimal predictive maintenance (PdM). This addresses the issues of equipment downtime and unnecessary maintenance checks in run-to-failure maintenance and preventive maintenance. Both feature extraction and prediction algorithm have played crucial roles on the performance of RUL prediction models. A benchmark dataset, namely Turbofan Engine Degradation Simulation Dataset, was selected for performance analysis and evaluation. The proposal of the combination of complete ensemble empirical mode decomposition and wavelet packet transform for feature extraction could reduce the average root-mean-square error (RMSE) by 5.14–27.15% compared with six approaches. When it comes to the prediction algorithm, the results of the RUL prediction model could be that the equipment needs to be repaired or replaced within a shorter or a longer period of time. Incorporating this characteristic could enhance the performance of the RUL prediction model. In this paper, we have proposed the RUL prediction algorithm in combination with recurrent neural network (RNN) and long short-term memory (LSTM). The former takes the advantages of short-term prediction whereas the latter manages better in long-term prediction. The weights to combine RNN and LSTM were designed by non-dominated sorting genetic algorithm II (NSGA-II). It achieved average RMSE of 17.2. It improved the RMSE by 6.07–14.72% compared with baseline models, stand-alone RNN, and stand-alone LSTM. Compared with existing works, the RMSE improvement by proposed work is 12.95–39.32%.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2021 ◽  
Vol 17 (9) ◽  
pp. 727-735
Author(s):  
Jiamei Long ◽  
Jia Yang ◽  
Jing Peng ◽  
Leiqing Pan ◽  
Kang Tu

Abstract Moisture content and carotenoid content are important indicators for evaluating the drying process of carrot slices. There are growing attention to develop non-destructive methods as effectively analytical tools in quality assurance of drying carrot slices. In this study, the characteristic wavelengths of moisture and carotenoid content in carrot slices during hot air drying were extracted based on hyperspectral imaging technology. A multispectral imaging equipment was built after that, and the wavelengths of filters were determined according to the characteristic wavelengths. Based on the successive projection algorithm (SPA), the optimal wavelengths of moisture and carotenoid content were further determined, and prediction models of both were established based on the system. There were 12 filters selected in this study. The results showed that a support vector machine (SVM) prediction model for moisture content was established based on seven optimal wavelengths with 0.991 for the coefficient of determination of prediction set (R 2 p ) and 10.318 for the residual prediction residual (RPD). Based on eight optimal wavelengths, a SVM prediction model for carotenoid content was also established with 0.968 for R 2 p and 5.337 for RPD. The prediction performance is close to or even better than that based on hyperspectral. The study confirmed the feasibility of using the multispectral imaging equipment to measure the moisture and carotenoid content of carrot slices during drying based on selected wavelengths, laying a foundation for the further preparation of a portable multispectral detector for the quality of dry products.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


Agromet ◽  
2007 ◽  
Vol 21 (2) ◽  
pp. 46 ◽  
Author(s):  
W. Estiningtyas ◽  
F. Ramadhani ◽  
E. Aldrian

<p>Significant decrease in rainfall caused extreme climate has significant impact on agriculture sector, especialy food crops production. It is one of reason and push developing of rainfall prediction models as anticipate from extreme climate events. Rainfall prediction models develop base on time series data, and then it has been included anomaly aspect, like rainfall prediction model with Kalman filtering method. One of global parameter that has been used as climate anomaly indicator is sea surface temperature. Some of research indicate, there are relationship between sea surface temperature and rainfall. Relationship between Indonesian rainfall and global sea surface temperature has been known, but its relationship with Indonesian’s sea surface temperature not know yet, especialy for rainfall in smaller area like district. So, therefore the research about relationship between rainfall in distric area and Indonesian’s sea surface temperature and it application for rainfall prediction is needed. Based on Indonesian’s sea surface temperature time series data Januari 1982 until Mei 2006 show there are zona of Indonesian’s sea surface temperature (with temperature more than 27,6 0C) dominan in Januari-Mei and moved with specific pattern. Highest value of spasial correlation beetwen Cilacap’s rainfall and Indonesian’s sea surface temperature is 0,30 until 0,50 with different zona of Indonesian’s sea surface temperature. Highest positive correlation happened in March and July. Negative correlation is -0,30 until -0,70 with highest negative correlation in May and June. Model validation resulted correlation coeffcient 85,73%, fits model 20,74%, r2 73,49%, RMSE 20,5% and standart deviation 37,96. Rainfall prediction Januari-Desember 2007 period indicated rainfall pattern is near same with average rainfall pattern, rainfall less than 100/month. The result of this research indicate Indonesian’s sea surface temperature can be used as indicator rainfall condition in distric area, that means rainfall in district area can be predicted based on Indonesian’s sea surface temperature in zona with highest correlation in every month.</p><p>------------------------------------------------------------------</p><p>Penurunan curah hujan yang cukup signifikan akibat iklim ekstrim telah membawa dampak yang cukup signifikan pula pada sektor pertanian, terutama produksi tanaman pangan. Hal ini menjadi salah satu alasan yang mendorong semakin berkembangnya model-model prakiraan hujan sebagai upaya antipasi terhadap kejadian iklim ekstrim. Model prakiraan hujan yang pada awalnya hanya berbasis pada data time series, kini telah berkembang dengan memperhitungkan aspek anomali iklim, seperti model prakiraan hujan dengan metode filter Kalman. Salah satu indikator global yang dapat digunakan sebagai indikator anomali iklim adalah suhu permukaan laut. Dari berbagai hasil penelitian diketahui bahwa suhu permukaan laut ini memiliki keterkaitan dengan kejadian curah hujan. Hubungan curah hujan Indonesia dengan suhu permukaan laut global sudah banyak diketahui, tetapi keterkaitannya dengan suhu permukaan laut wilayah Indonesia belum banyak mendapat perhatian, terutama untuk curah hujan pada cakupan yang lebih sempit seperti kabupaten. Oleh karena itu perlu dilakukan penelitian yang mengkaji hubungan kedua parameter tersebut serta mengaplikasikannya untuk prakiraan curah hujan pada wilayah Kabupaten. Hasil penelitian berdasarkan data suhu permukaan laut wilayah Indonesia rata-rata Januari 1982 hingga Mei 2006 menunjukkan zona dengan suhu lebih dari 27,6 0C yang dominan pada bulan Januari-Mei dan bergerak dengan pola yang cukup jelas. Korelasi spasial antara curah hujan kabupaten Cilacap dengan SPL wilayah Indonesia rata-rata bulan Januari-Desember menunjukkan korelasi positip tertinggi antara 0,30 hingga 0,50 dengan zona SPL yang beragam. Korelasi tertinggi terjadi pada bulan Maret dan Juli. Sedangkan korelasi negatip berkisar antara -0,30 hingga -0,70 dengan korelasi negatip tertinggi pada bulan Mei dan Juni. Validasi model prakiraan hujan menghasilkan nilai koefisien korelasi 85,73%, fits model 20,74%, r2 sebesar 73,49%, RMSE 20,5% dan standar deviasi 37,96. Hasil prakiraan hujan bulanan periode Januari-Desember 2007 mengindikasikan pola curah hujan yang tidak jauh berbeda dengan rata-rata selama 19 tahun (1988-2006) dengan jeluk hujan kurang dari 100 mm/bulan. Hasil penelitian mengindikasikan bahwa SPL wilayah Indonesia dapat digunakan sebagai indikator untuk menunjukkan kondisi curah hujan di suatu wilayah (kabupaten), artinya curah hujan dapat diprediksi berdasarkan perubahan SPL pada zona-zona dengan korelasi yang tertinggi pada setiap bulannya.</p>


Author(s):  
Jae-Hyun Kim, Chang-Ho An

Due to the global economic downturn, the Korean economy continues to slump. Hereupon the Bank of Korea implemented a monetary policy of cutting the base rate to actively respond to the economic slowdown and low prices. Economists have been trying to predict and analyze interest rate hikes and cuts. Therefore, in this study, a prediction model was estimated and evaluated using vector autoregressive model with time series data of long- and short-term interest rates. The data used for this purpose were call rate (1 day), loan interest rate, and Treasury rate (3 years) between January 2002 and December 2019, which were extracted monthly from the Bank of Korea database and used as variables, and a vector autoregressive (VAR) model was used as a research model. The stationarity test of variables was confirmed by the ADF-unit root test. Bidirectional linear dependency relationship between variables was confirmed by the Granger causality test. For the model identification, AICC, SBC, and HQC statistics, which were the minimum information criteria, were used. The significance of the parameters was confirmed through t-tests, and the fitness of the estimated prediction model was confirmed by the significance test of the cross-correlation matrix and the multivariate Portmanteau test. As a result of predicting call rate, loan interest rate, and Treasury rate using the prediction model presented in this study, it is predicted that interest rates will continue to drop.


Sign in / Sign up

Export Citation Format

Share Document