scholarly journals Structure of a Smart Grass Cutter Based on Solar Power

According to the present technology commonly used manually operated devices or machines to cut the grass. In this project we introduce the smart grass cutting machine. The machine consisting of rotating blades operated by the DC motor, trolley to store the grass, hurdle removal and the system is operated by the electrical energy provided by the battery, and the solar panel is used to charge the battery. The main aim of the smart grass cutting device is to provide the operation of grass cutting at the desired area input by the user. This machine is designed to cut the grass at the desired height. Grass cutting employing a rotary blade which is rotated along the vertical axis are known as rotary mover. The requirement of electricity is increasing day by day at an alarming rate due to use of electrical gadgets and the growing amount of industries and the machines. Solar energy is a best alternative source of the energy.

Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

Indonesia, which is a tropical country, has a very large potential for solar energy because of its area that stretches across the equator, with a radiation magnitude of 4.80 kWh / m2 / day or equivalent to 112,000 GWp. On the other hand, the earth receives solar power of 1.74 x 1017 W / hour and about 1-2% of it is converted into wind energy. However, from the total energy potential, Indonesia has only utilized around 10 MWp for solar energy and not much different, wind energy, whose utilization is planned to reach 250 MW in 2025, has only been utilized around 1 MW of the total existing potential. With this potential, to be able to supply additional power and help save energy for existing facilities in the building, a Prototype of Solar Panel Hybird and Vertical Axis Wind Turbine was created. The design of this prototype is a combination of savonious type turbines and solar panels, where the use of this type of turbine is because it can rotate at low wind speeds (low wind velocity) and its construction is very simple.


2018 ◽  
Vol 2 (2) ◽  
pp. 47
Author(s):  
Venny Yusiana ◽  
Hendi Matalata

Solar or solar energy can be an alternative source of energy in the future, where solar energy can be converted into electrical energy by utilizing the photoelectric effect that occurs in photovoltaic components or solar cells.  Solar cells or photovoltaic components can convert sunlight into electrical energy that can be used directly by the load or stored in a battery, a kind of electrochemical device that can store electrical charges in the form of chemical energy. The electrical energy generated by the solar cell is influenced by the intensity of light received by the sun. To gain the desired power and voltage, the solar cells are connected in series and parallel into a solar cell module. 2N3055 & MJ2955 transistor based solar panels are the basic materials for designing alternative power generation. In the process of manufacture, this solar panel utilizes the components of used components that are still feasible to use, so it can be used to be the appropriate technology to produce a solar panel that utilizes solar energy in the form of sunlight and solar heat. In this study also conducted experiments using glass components as a reflection effect from light sources. The result of this experiment obtained that the amount of electrical energy output resulting from the reflection effect of light by using 2N3055 transistor and MJ2955 transistor can produce increased current and increase electrical power.Keywords: Solar cell, Transistor 2N3055 & MJ2955, The effect of reflection light


2021 ◽  
Vol 11 (4) ◽  
pp. 4456-4464
Author(s):  
S.V.G.V.A. Prasad

In recent years the use of solar energy is found to have grown by a large amount. Solar energy is renewable energy and the demand for it as clean energy shows its growth by nearly 50 percent in the past decade. It is estimated that the sun is able to generate energy within 24 hours that the entire population of the world could consume in 27 years. Solar power is the energy from the sun that is converted into thermal or electrical energy. The energy harnessed from the sun's rays is used for a variety of applications like electricity generation, to provide light for the interior environment, and many other domestic, commercial, and industrial purposes. Usage of fossil fuels for electricity production results in increased pollution and this mandates many governments to encourage moving to electricity generation using solar power. The large amount of solar energy that is available is found to be the most appealing source of electricity. Solar panels form a major part of the solar energy setup. Hence in this article let us review the various types of solar panels. This paper also deals with comparing the merits and demerits of the different types of solar panels that are available in the market. A section that presents the efficiency of the different kinds of the solar panel is also present in this paper. The role of temperature coefficient, fire rating, and hail rating in the performance of the solar panel is also addressed in this paper.


2020 ◽  
Author(s):  
Sajadul Alam Saimon ◽  
Rakibul Ahasan

Renewable energy is of great importance for today’s world which is generally produced from natural sources. Countries like Bangladesh has to use this energy to meet their energy demand. Day by day the demand of electricity is increasing in stormy pace but our resource is limited. So using renewable resources i.e. solar power to meet the demand of electricity is highly necessary especially rural and remote areas. This paper examined the nature and extent of solar energy in Boyarjapha village of Paikgachha Upazila of Khulna district to analyse the effects of solar panel in their daily life. Many positive impacts of solar power were found out such as better quality lighting, education, entertainment, communications, business, increasing working hours, women empowerment, increasing awareness etc. There are a few bad effects of solar energy too. But Government intervention is a must to ensure better quality results in coming future. Similarly, government has to take serious steps to advertise solar electricity in remote areas of Bangladesh


Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Viktorovich Yudaev ◽  
Vera Dyachenko ◽  
Shavkat Klychev

The object of research in the chapter is the solar power plant as the source of additional economically expedient power supply of the electrical energy consumer. The purpose of this research is to analyze the options for the layout of solar power plant, taking into account the solar energy potential of the district, the design features of the proposed location, the load curve of the consumer, and the cost of the generated electrical energy. The chapter presents the results of calculation and selection of the parameters of solar power plant elements on the roof of the consumer's production building. The chapter presents the results of research of the dependence of the cost of the electricity generated by the solar power plant on the number of installed panels, which in order to increase the realized solar energy potential of the district also allows adding photoelectric modules and accumulating devices in the layout of the operating station at tariff growth. The chapter presents the results of researching these areas, that are conducted by the authors and which are completely original.


2019 ◽  
Vol 125 ◽  
pp. 10003 ◽  
Author(s):  
Jaka Windarta ◽  
Ardhito Pratama ◽  
Denis ◽  
Agung Nugroho

Indonesia is a country that is geographically located right in the equator and variously advantage and the wide for the use of solar energy. Indonesia has a relatively high radiation level, which is 4.80 kWh / m2 / day. Cemara Island is a tourist place but does not have electricity from PLN because access to its location is still difficult to reach. So from that chosen the planning system for the use of electrical energy using solar energy. However, economic analysis is needed so that the estimated weaknesses of the off-grid solar system can be estimated so as to reduce the risk of losses. The testing of each component in the Solar Power Plant system also needs to be done to determine the condition and quality of the components to be used. The economic analysis of the Cemara Island Solar Power Plant System with an initial investment of Rp 52,553,000, in scenario 1 uses interest at 6%, then in scenario 2 without using interest. Through calculations by looking for the value of COE (Energy Cost), NPC (Net Present Cost) and BEP (Break-Even Point), so that costs can be calculated by the manager with the number of 11 managers per month.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Wendryanto Wendryanto ◽  
Gede Widayana ◽  
I Wayan Sutaya

ABSTRAK     Prototipe ini didesain agar panel surya mampu senantiasa tegak lurus dengan matahari dengan menggunakan Arduino Nano 3.0 Atmega 328 CH340G sebagai control otomatis, serta komponen lain seperti sensor cahaya (LDR) dan motor DC. Prinsip kerja dari mikrokontroler ini dalam penggerak panel surya 2 sumbu ini yaitu output dari sensor LDR diolah oleh mikrokontroler Arduino Nano 3.0 Atmega 328 CH340G dengan menggunakan bahasa pemrograman. Apabila sensor LDR tidak tegak lurus terhadap matahari, maka akan memiliki nilai tahanan yang berbeda. Jika terjadi perbedaan maka mikrokontroler akan merespon dan menggerakkan motor agar medapat nilai resistansi yang sama. Dari hasil pengujian dengan membandingkan panel surya yang statis, dengan pengerak 1 sumbu dan dengan penggerak 2 sumbu, didapat bahwa panel surya yang dilengkapi dengan penggerak 2 sumbu memiliki daya serap energi matahari yang lebih optimal. Hal ini dibuktikan dengan pengukuran tegangan listrik yang dihasilkan panel surya lebih besar apabila dibandingkan dengan panel surya yang statis maupun yang dengan penggerak 1 sumbu. Dari data yang didapat, terjadi peningkatan tegangan mulai pukul 09.00 dan tegangan maksimal yang didapat terjadi pada pukul 12.00, setelah itu terjadi penurunan tegangan yang dihasilkan. Kata-kata kunci : Arduino Nano 3.0 Atmega 328ch340g, Motor DC, Penggerak Panel Surya 2 Sumbu.ABSTRACTThis prototype is design for has be able to track the position of the sun with using an Arduino Nano 3.0 Atmega 328 CH340G for automatic control, with another component as well as LDR censor, and DC motor. The principle of this microcontroller in solar tracker dual axis is output of LDR censor processed by microcontroller Arduino Nano 3.0 ATmega 328 CH340G with assembly. If the LDR cencor not perpendicular with sun light, so cencor LDR have a deiferification the value of resistance. If that happens, so microcontroller will respond and move the DC motor to get the same value of resistance. Of the test result of compare static solar energy, solar tracker with one axis, and solar tracker with dual axis, be obtained that solar tracking with dual axis have a power to exploit of the sun light is more optimally. This can be proved with measuring of electrical voltage greater than static solar energy as well solar tracker with one axis. From the obtained of data, the increase of electrical voltage start from at 09.00 am and maksimum electrical voltage can be reach from 12.00 am, after that happen decline of electrical voltage. Key Words: Arduino Nano ATmega 328 CH340G, DC Motor, Solar Tracker Dual Axis,


2021 ◽  
Vol 2 (1) ◽  
pp. 14-21
Author(s):  
Heri Suripto ◽  
Unggul Satria Jati

The outbreak of the Covid 19 disease has caused disaster to the people. The emergence of this disease’s outbreak encourages the importance clean lifestyle. In order not to easily contracted the Covid 19 disease, it is necessary to make automatic handwashing equipment to prevent people from having direct contact with the equipment. In this research the design and testing of an automatic handwashing equipment based on solar energy were carried out. The purpose of this research was to determine the capacity of the sun's intensity to provide electrical energy through the solar module to the battery which will be used to supply electrical energy of solar energy-based automatic handwashing equipment. The method used in this research was the Palh and Beitz method approach and the experimental method which started with the design, material selection, assembly and testing. The design produced equipment specifications for a solar module framework with a height of 100 cm, a width of 80 cm, a length of 100 cm, while for a sink frame with a height of 90 cm, a width of 45 cm, and a length of 55 cm. The test was carried out in three phases, phase one was testing the module input power. The module input power in the test produced a power of 2461 Watts with a solar radiation intensity of 3237 W / m2. The peak intensity and power of the sun was shown at 13.00 WIB. The second phase of the test was the length of time needed to charge the battery took 2.5 hours. The third phase of the test was the power needed for sensors and pumps of 358 Watts. The power requirement of 358 Watts could be supplied by a 100 Wp solar panel, since the power released from a 100 Wp solar panel is 400 Watts.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Sign in / Sign up

Export Citation Format

Share Document