scholarly journals Use of Glass Dust to Improve Concrete Strength on Offshore Platform Installations

The primary aim of this study is to investigate the influence of using glass dust as an additional in conventional concrete material on the properties of fresh and hardened concrete. Soil pollution happen when non-biodegradable materials disposed into land. However, the used of this nonbiodegradable can do wonder for construction purposes. This is due to the non- biodegradable materials which cannot be broken down to simple organic molecules by micro-organisms. Glass dust is one of the example of non- biodegradable. Nowadays, the used of this dust becoming more popular due to its properties. In this study, the glass dust which consist of silica has being used as an additional ingredients to concrete cement. The concentrations of the glass has being varies to determine the mechanical properties e.g. compressive strength of M35 grade concrete. The variation of glass dust are from 10, 20 and 30%. The compressive strength of concrete cubes is tested after 7 and 14 days. The outcomes of the study are presented in tables and graphs.

Author(s):  
Joseph A. Ige ◽  
Mukaila A. Anifowose ◽  
Samson O. Odeyemi ◽  
Suleiman A. Adebara ◽  
Mufutau O. Oyeleke

This research assessed the effect of Nigerian rice husk ash (RHA) and calcium chloride (CaCl2) as partial replacement of cement in concrete grade 20. Rice husk ash (RHA) is obtained by combustion of rice husk in a controlled temperature. The replacement of OPC with rice husk ash (RHA) were 0%, 5%, 10%, 15% and 20%. 1% of Calcium Chloride was blended with OPC/RHA in all the test specimens except from control mix. Concrete cubes of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14 and 28 days respectively. Slump test was conducted on fresh concrete while density test and compressive strength test were conducted on hardened concrete. The slump results revealed that the concrete becomes less workable (stiff) as percentage increases. The compressive strength result at 28 days revealed that 5%RHA/1%CaCl2 have the highest strength of 26.82N/mm2 while 20%RHA/1%CaCl2 have the lowest strength (21.48N/mm2). Integration of 5%RHA/1%CaCl2 and 10%RHA/1%CaCl2 as cement replacement will produce a concrete of higher compressive strength compared to conventional concrete in grade 20 concrete.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Syifa Fauziah ◽  
Anisah Anisah ◽  
Sittati Musalamah

This research aims to determine the maximum compressive strength value of concrete speedcrete using naphthalene additive additive at each test age and compare with normal concrete 28 days. This research used cylindrical test object with diameter 15 cm and height 30 cm. Speedcrete concrete does not undergo the treatment process while the normal concrete test object through the treatment process. Testing compressive strength of concrete speedcrete using Crushing Test Machine tool. In this research the compressive strength was produced by using superplasticizer type naphthalene and compared with normal concrete without using additive. The target quality plan is fc '35 MPa with the use of additive dose of 1.7% of the weight of cement. The results of this research showed an increase in the value of compressive strength of concrete speedcrete with aadditive materials added naphthalene increased with increasing age of concrete. The results showed that the compressive strength of concrete speedcrete with naphthalene additive materials of 12 hours, 18 hours, 28 hours and 48 hours was 0.5 MPa, 17,81 MPa, 31,14 MPa and 45,77 MPa. Normal strength concrete strength with the addition of 20% water age 28 days that is equal to 54.76 MPa.


2014 ◽  
Vol 11 (4) ◽  
pp. 323-330 ◽  
Author(s):  
S. Arivalagan

The present day world is witnessing the construction of very challenging and difficult civil engineering structures. Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fiber extends its possibilities. Steel fiber acts as a bridge to retard their cracks propagation, and improve several characteristics and properties of the concrete. Therefore, an attempt has been made in this investigation to study the Flexural Behaviour of Steel Fiber Reinforced self compacting concrete incorporating silica fume in the structural elements. The self compacting concrete mixtures have a coarse aggregate replacement of 25% and 35% by weight of silica fume. Totally eight mixers are investigated in which cement content, water content, dosage of superplasticers were all constant. Slump flow time and diameter, J-Ring, V-funnel, and L-Box were performed to assess the fresh properties of the concrete. The variable in this study was percentage of volume fraction (1.0, 1.5) of steel fiber. Finally, five beams were to be casted for study, out of which one was made with conventional concrete, one with SCC (25% silica fume) and other were with SCC (25% silica fume + 1% of steel fiber, 25% silica fume + 1.5% of steel fiber) one with SCC (35% silica fume), and other were SCC (35% Silica fume + 1% of steel fiber, 35% Silica fume + 1.5% of steel fiber). Compressive strength, flexural strength of the concrete was determined for hardened concrete for 7 and 28 days. This investigation is also done to determine the increase the compressive strength by addition of silica fume by varying the percentage.


2018 ◽  
Vol 45 ◽  
pp. 00116
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik

In the paper it was decided to recognize the material characteristics of concrete based on ceramic aggregate, aluminous cement with the addition of zeolite (5%, 10%, 15%) and air entraining admixture. Aggregate crushed to 2 fractions was used for designing the concrete mix : 0-4 mm, and 4-8 mm. The research involved the use of clinoptilolite derived from the zeolite tuff deposit at Sokyrnytsya (Transcarpathia, Ukraine). The dominant component in the zeolite is clinoptilolite in an amount of about 75%. The research carried out by the authors showed that the addition of zeolite, among others, increases the compressive strength of concrete, significantly improves the frost resistance, which in the case of using only aluminous cement is very low. The obtained results confirm the possibility of using the above-mentioned components, which improve the concrete material properties and are environmentally friendly.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2015 ◽  
Vol 4 (4) ◽  
pp. 520 ◽  
Author(s):  
Mohammad Al-Rawashdeh ◽  
Ashraf Shaqadan

The purpose of this research is to investigate the feasibility of using basalt aggregates and plasticizers in concrete mixes. An elaborate experimental program that included a variation of plasticizer and basalt in concrete mixes. The laboratory investigation included measurements of sieve analysis, compressive strength, and slump test. The compressive test was evaluated at 7, 14, 28 days of curing time. The results show significant improvement in concrete strength up to 2% of additive plasticizer after that concrete strength was reduced.


2019 ◽  
Vol 289 ◽  
pp. 06001
Author(s):  
Serkan Karatosun ◽  
Muhammet Asan ◽  
Oguz Gunes

Rapid and reliable condition assessment of reinforced concrete structures in high seismicity regions is a priority task in estimating their seismic safety. Non-destructive testing (NDT) methods may contribute to the condition assessment practice by providing fast and reliable strength estimation while causing minimal or no damage to the structure. Drilling resistance is an NDT method that has been used for mechanical characterization of natural stone and wood by measuring the force response for constant penetration rate and rotational speed. This paper focuses on the relationship between drilling resistance and compressive strength of concrete, including when it is combined with other NDT methods. Concrete cube samples produced using 6 different concrete mixtures were tested. Correlation equations were then obtained using statistical analysis. The results reveal that it may be possible to reliably estimate the compressive strength of concrete using drilling resistance method.


2019 ◽  
Vol 9 (5) ◽  
pp. 4596-4599 ◽  
Author(s):  
N. Bheel ◽  
R. A. Abbasi ◽  
S. Sohu ◽  
S. A. Abbasi ◽  
A. W. Abro ◽  
...  

This study was undertaken to reduce the usage of cement in concrete where different proportions of tile powder as cement replacement were used. Since in the manufacture of cement an exuberant amount of carbon dioxide is disposed of in the environment, this research aims to curtail the dependence on cement and its production. The objective of this work is to investigate the properties of fresh mix concrete (workability) and hardened concrete (compressive and splitting tensile strength) in concrete with different proportions of 0%, 10%, 20%, 30%, and 40% of tile powder as a cement substitute. In this study, a total of 90 concrete samples were cast with mix proportions of 1:1.5:3, 0.5 water-cement ratio, cured for 7, 14 and 28 days. For determining the compressive strength, cubical samples, with dimensions of 100mm×100mm×100mm, were cast, while for the determination of the splitting tensile strength, cylindrical samples with dimensions of 200mm diameter and 100mm height, were tested after 7, 14, and 28 days. The highest compressive strength of concrete achieved for tile powder concrete was 7.50% at 10% replacement after 28days of curing. The splitting tensile strength got to 10.2% when concrete was replaced with 10% of tile powder and cured for 28 days. It was also shown that with increasing percentage of the tile powder content, the workability of the fresh concrete increases.


2020 ◽  
Vol 13 (5) ◽  
pp. 161-168
Author(s):  
Liu Jun ◽  
◽  
Xiang Yuzhou ◽  
Xiong Yucheng ◽  
Wu zusong ◽  
...  

The shear strength of some concrete materials should be analyzed based on elastic-plastic theory in petroleum, water conservancy, tunnel engineering, and so on. The majority of researches concentrate mainly on the tensile and compressive strength of concretes, but few have studied the shear strength. Concrete materials have been increasingly applied broadly to geotechnical engineering. Thus, investigating the shear strength characteristics of concretes is of great importance. To study the characteristics of shear strength of concrete materials, the theoretical relationship between concrete’s compressive and shear strengths was discussed in the uniaxial, biaxial, and triaxial stress states. The concrete strength envelopes under the biaxial and uniaxial compressive strength were studied. Given the concrete shear strength, the overload method and the finite difference software FLAC3D were used to investigate the concrete failure modes and ultimate bearing capacities. Results show that the theoretical formula under the 3D stress-bearing condition is only applicable to the circumstance with equal compressive strengths under the biaxial and uniaxial conditions, which conforms to 3D Mohr’s circle theory. 3D Mohr’s circle theory is not totally applicable to concrete materials where the concrete compressive strength under the biaxial condition is larger than that under the uniaxial condition. Concrete material gains its shear strength 47 percent from its frictional force while the rest form cohesive force. The study results can provide a certain basis and reference for analyzing the shear strength characteristics of concrete materials.


Sign in / Sign up

Export Citation Format

Share Document