scholarly journals Biological Treatment of Dairy Wastewater using Bio Enzyme from Citrus Fruit Peels

Wastewater is directly discharged into the ground or other water sources; it causes soil pollution and it affects the nature of the soil. Hence it is necessary to treat the wastewater before discharging. The objective is to treat the dairy wastewater using Bio Enzyme. Bio Enzyme is produced by the fermentation process of citric fruit peels, water, and jaggery. To reduce the time of the fermentation process, yeast is added into the Bio Enzyme. Then the parameters like Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Solids(TS), Total Dissolved Solids(TDS), Total Suspended Solids(TSS), pH, Alkalinity, Chlorides and Oil & Grease present in Dairy wastewater after the treatment using Bio Enzyme in different percentages (2%,4%&6%) were found. Then from the results the efficient percentage of Bio Enzyme for treating the Diary Wastewater was found.

Author(s):  
R. Sandhiya ◽  
K. Sumaiya Begum ◽  
D. Charumathi

<p><strong>Objective: </strong>The objectives of the present study were a) to isolate and screen bacteria for dye removal from synthetic solution b) to optimize various variables such as pH, static/shaking and initial dye concentration on degradation of triphenyl methane dyes namely basic violet 3 and basic green 4 by isolated <em>Staphylococcus aureus</em> c) to analyse enzymes involved in the biodegradation of triphenylmethane dyes d) to treat real leather dyeing wastewater with newly isolated strain of <em>Staphylococcus aureus </em>e) to characterize untreated and treated leather dyeing wastewater f) to study the effects of real and treated effluent on plants and <em>Rhizobium</em>.<strong></strong></p><p><strong>Methods: </strong>Isolation of bacteria from sludge was carried out by spread plate method and the bacteria was identified by morphological and biochemical characterization. The isolated bacterium was screened for dye decolorization potential of triphenylmethane dyes basic violet 3 and basic green 4 The effects of parameters were studied by varying pH (from 3 to 9), temperature (from 15-45 °C), and initial dye concentration (from 10-500 mg/l). The enzyme involved in biodegradation was studied in intracellular extract. Real leather dyeing wastewater was treated with the bacteria and characterized. The treated wastewater was tested on plants and <em>Rhizobium </em>for toxicity. <strong></strong></p><p><strong>Results: </strong>Dye decolorization potential of bacteria <em>Staphylococcus aureus</em> isolated from wastewater for leather dyes basic violet 3 and basic green 4 were evaluated. Dye decolorization using bacteria was found to be dependent on physicochemical parameters (shaking, pH and initial dye concentration). Enzymes NADH-DCIP reductase and MG reductase were found to play dominant role during biodegradation of synthetic dyes. Application oriented studies using growing bacteria in pure cultures were carried out with leather dyeing wastewater collected from DKS prime tanners. Analysis of raw leather dyeing wastewater showed high pollution load in terms of color, Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand whereas the leather dyeing wastewater treated with pure culture of <em>Staphylococcus aureus</em> showed considerable decrease in Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand values which were within the permissible limits. Phytotoxicity and microbial toxicity studies confirmed the non-toxic nature of treated leather dyeing wastewater. <strong></strong></p><p><strong>Conclusion: </strong>Our study proved that <em>Staphylococcus aureus</em> can serve as a potential remediation agent for the treatment of leather dyeing wastewater.</p>


Author(s):  
Sipra Mallick ◽  
F Baliarsingh

Water quality index (WQI), a technique of rating water quality, is an effective tool to access quality and ensure sustainable safe use of water for drinking. The main objective of the present study is to access the surface water quality of Kathajodi river for knowing the suitability of drinking purpose by calculating the WQI. Samples were collected from selected locations during different seasons (winter, summer, rainy) over a period of 3 years (2011, 2012, 2013). Water quality assessment was carried out for the parameters like pH, total dissolved solids, total suspended solids, Alkalinity, Biological Oxygen Demand(BOD), Dissolved Oxygen(DO), Chloride, Nitrate, Alkalinity, Total Hardness, Calcium, Magnesium. The main objective is to develop a model to assess and predict the water quality changes of Kathajodi River Basin Odisha, India using neural networks and compared with the statistical methods. The result shows the proposed ANN prediction model has a great potential to simulate and predict the strongly correlated parameters like TSS (Total Suspended Solids), TDS(Total Dissolved Solids), Alkalinity, BOD(Biological Oxygen Demand)with Mean Square Error (MSE) : TSSMSE = 1.78 ; TDSMSE = 0; AlkalinityMSE = 3.77 and BODMSE = 8E-03.The Neural Network model has been compared with Linear Regression model to find out the best modelling approach for the study area. And it is concluded that the neural network model is superior to Linear Regression Model.


2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


2013 ◽  
Vol 68 (2) ◽  
pp. 462-471 ◽  
Author(s):  
Mathieu Lepot ◽  
Jean-Baptiste Aubin ◽  
Jean-Luc Bertrand-Krajewski

Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.


Author(s):  
Bisekwa E ◽  
Njogu PM ◽  
Kufa-Obso T

Arabica coffee is cultivated by smallholders for commercial purposes, and it is commonly processed using wet Coffee Processing Technology. Burundi has more than 250 Coffee Processing factories which discharge their effluents to water bodies. The goal of this study was to determine the levels of physicochemical parameters in wastewater from Coffee Processing Technology factories in major coffee growing ecological zones in Burundi. Wastewater samples were collected from 19 sites representing private, public and cooperative owned coffee processing stations. Physicochemical analyses were determined in-situ field and laboratory conditions using standard procedures. Results indicate that the wastewater does not meet Burundi Effluent Discharge standards for Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand, pH. The data revealed that the wet coffee processing pollutes the environment in terms of pH, Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand. There is need to install quality polishing technologies to treat the water before disposal.


2018 ◽  
Vol 2 ◽  
pp. 50 ◽  
Author(s):  
Brian T. Hawkins ◽  
Tate W. Rogers ◽  
Christopher J. Davey ◽  
Mikayla H. Stoner ◽  
Ewan J. McAdam ◽  
...  

Onsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable. Here, we describe a pilot study in which concentrated blackwater is pretreated with ultrafiltration and granular activated carbon prior to electrochemical disinfection, and show that this combination of treatments removes 75-99% of chemical oxygen demand, 92-100% of total suspended solids, and improves the energy efficiency of electrochemical blackwater treatment by an order of magnitude.


2005 ◽  
Vol 51 (11) ◽  
pp. 159-166
Author(s):  
E. Ubay-Cokgor ◽  
C.W. Randall ◽  
D. Orhon

In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWINTM BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.


2010 ◽  
Vol 113-116 ◽  
pp. 1726-1731
Author(s):  
Wei Xu ◽  
Li Fen Hao ◽  
Lei Zhou

Traditional lime and sulfide dehairing process is a major source of the pollution, such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS) and toxic H2S gas, etc. Enzymatic dehairing process is known to be cleaner but its dehairing effects are unsatisfactory. Hence, an attempt has been made to solve those two unhairing methods’ disadvantages through a biochemical approach. Several commercial enzyme formulations were chosen to research effects of hydrosulfide and peroxide on its activities, and then hair-saving enzymatic unhairing experiments with those two reagents were conducted in paste and pile method more effectively and cleanly. Results show that activity of enzyme 2709 is stabilized by the addition of hydrosulfide through activity measurements; Peroxide has some activation effect on protease 3942. Hair removal is found to be complete using scanning electron microscope (SEM) analysis. Those two processes enjoy a significant reduction in BOD, COD, TDS and TSS. The perfromances of the experimental leathers are also comparable to that of conventional ones. Therefore, those are cleaner processing technologies that could be chosen to solve traditional method’s disadvantage.


Sign in / Sign up

Export Citation Format

Share Document