Surface Water Quality Assessment and Prediction Modelling of Kathajodi River

Author(s):  
Sipra Mallick ◽  
F Baliarsingh

Water quality index (WQI), a technique of rating water quality, is an effective tool to access quality and ensure sustainable safe use of water for drinking. The main objective of the present study is to access the surface water quality of Kathajodi river for knowing the suitability of drinking purpose by calculating the WQI. Samples were collected from selected locations during different seasons (winter, summer, rainy) over a period of 3 years (2011, 2012, 2013). Water quality assessment was carried out for the parameters like pH, total dissolved solids, total suspended solids, Alkalinity, Biological Oxygen Demand(BOD), Dissolved Oxygen(DO), Chloride, Nitrate, Alkalinity, Total Hardness, Calcium, Magnesium. The main objective is to develop a model to assess and predict the water quality changes of Kathajodi River Basin Odisha, India using neural networks and compared with the statistical methods. The result shows the proposed ANN prediction model has a great potential to simulate and predict the strongly correlated parameters like TSS (Total Suspended Solids), TDS(Total Dissolved Solids), Alkalinity, BOD(Biological Oxygen Demand)with Mean Square Error (MSE) : TSSMSE = 1.78 ; TDSMSE = 0; AlkalinityMSE = 3.77 and BODMSE = 8E-03.The Neural Network model has been compared with Linear Regression model to find out the best modelling approach for the study area. And it is concluded that the neural network model is superior to Linear Regression Model.

Author(s):  
R. Sandhiya ◽  
K. Sumaiya Begum ◽  
D. Charumathi

<p><strong>Objective: </strong>The objectives of the present study were a) to isolate and screen bacteria for dye removal from synthetic solution b) to optimize various variables such as pH, static/shaking and initial dye concentration on degradation of triphenyl methane dyes namely basic violet 3 and basic green 4 by isolated <em>Staphylococcus aureus</em> c) to analyse enzymes involved in the biodegradation of triphenylmethane dyes d) to treat real leather dyeing wastewater with newly isolated strain of <em>Staphylococcus aureus </em>e) to characterize untreated and treated leather dyeing wastewater f) to study the effects of real and treated effluent on plants and <em>Rhizobium</em>.<strong></strong></p><p><strong>Methods: </strong>Isolation of bacteria from sludge was carried out by spread plate method and the bacteria was identified by morphological and biochemical characterization. The isolated bacterium was screened for dye decolorization potential of triphenylmethane dyes basic violet 3 and basic green 4 The effects of parameters were studied by varying pH (from 3 to 9), temperature (from 15-45 °C), and initial dye concentration (from 10-500 mg/l). The enzyme involved in biodegradation was studied in intracellular extract. Real leather dyeing wastewater was treated with the bacteria and characterized. The treated wastewater was tested on plants and <em>Rhizobium </em>for toxicity. <strong></strong></p><p><strong>Results: </strong>Dye decolorization potential of bacteria <em>Staphylococcus aureus</em> isolated from wastewater for leather dyes basic violet 3 and basic green 4 were evaluated. Dye decolorization using bacteria was found to be dependent on physicochemical parameters (shaking, pH and initial dye concentration). Enzymes NADH-DCIP reductase and MG reductase were found to play dominant role during biodegradation of synthetic dyes. Application oriented studies using growing bacteria in pure cultures were carried out with leather dyeing wastewater collected from DKS prime tanners. Analysis of raw leather dyeing wastewater showed high pollution load in terms of color, Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand whereas the leather dyeing wastewater treated with pure culture of <em>Staphylococcus aureus</em> showed considerable decrease in Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand values which were within the permissible limits. Phytotoxicity and microbial toxicity studies confirmed the non-toxic nature of treated leather dyeing wastewater. <strong></strong></p><p><strong>Conclusion: </strong>Our study proved that <em>Staphylococcus aureus</em> can serve as a potential remediation agent for the treatment of leather dyeing wastewater.</p>


2020 ◽  
Vol 24 (9) ◽  
pp. 1599-1606
Author(s):  
Thanh Giao Nguyen

This study aimed to evaluate water quality in the canals in Ninh Kieu district, Can Tho city in the period of 2018-2019. Monitoring data were collected at 10 locations distributed on Tham Tuong canal (TT1, TT2), Cai Khe canal (CK1-CK4), Bun Xang lake (BX1-BX2), Cai Son - Hang Bang canal (HB1, HB2). Water quality parameters assessed include temperature, pH, turbidity, total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), orthophosphate (PO4 3--P), nitrate (NO3 -- N), ammonia (NH4 +-N), nitrite (NO2 -- N) and coliforms. The results showed that water quality in the canals in Ninh Kieu district, Can Tho city were contaminated with coliforms, TSS, BOD, and COD. The temperature and pH parameters were very little fluctuated, while BOD, coliforms, and DO tended to decrease in the period from 2018-2019. Particularly, the  mean P-PO4 3- in 2019 was higher than that in 2018. BOD, COD, TSS, P-PO4 3-, and coliforms in Tham Tuong canal were higher than those in other water bodies because several production and business activities are taking place. Water pollution problem in Ninh Kieu district, Can Tho city needs to be solved as soon as possible to ensure healthy environment, attracting tourists to visit in Can Tho city. Keywords: water quality, pollution, microorganisms, organic matters, suspended solids, Ninh Kieu, Can Tho


Wastewater is directly discharged into the ground or other water sources; it causes soil pollution and it affects the nature of the soil. Hence it is necessary to treat the wastewater before discharging. The objective is to treat the dairy wastewater using Bio Enzyme. Bio Enzyme is produced by the fermentation process of citric fruit peels, water, and jaggery. To reduce the time of the fermentation process, yeast is added into the Bio Enzyme. Then the parameters like Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Solids(TS), Total Dissolved Solids(TDS), Total Suspended Solids(TSS), pH, Alkalinity, Chlorides and Oil & Grease present in Dairy wastewater after the treatment using Bio Enzyme in different percentages (2%,4%&6%) were found. Then from the results the efficient percentage of Bio Enzyme for treating the Diary Wastewater was found.


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2015 ◽  
Vol 16 (SE) ◽  
pp. 395-403
Author(s):  
Abbas Ghaffari Habib ◽  
Seyed Hadi Khatami

In Bahar County (Iran), rivers are among the important sources of water for the agricultural sector. Therefore, this research evaluated the parameters of temperature, pH, Total Dissolved Solids (TDS), turbidity, nitrate, total phosphate, dissolved oxygen (DO), Biological Oxygen Demand (BOD5), and fecal coliform at five stations for five months (from February 2015 to June 2015) to determine water quality in the rivers. Based on this evaluation, the NSFWQI index was calculated and, finally, the routes of the rivers were zoned. The best water quality was recorded at Station Number 3 with the NSFWQI Value of 80 in January, and the worst at Station Number 5 (latgah) with the NSFWQI Value of 37 in June. Based on the mean NSFWQI indices, water quality was Medium at Stations Number 1, 2, and 4, good at Station Number 3, and bad at Station number 5.


2017 ◽  
Vol 16 (1) ◽  
pp. 75-85
Author(s):  
O. E. OMOFUNMI ◽  
J. K. . ADEWUMI ◽  
A. F. ADISA ◽  
S. O. ALEGBELEYE

Catfish production is one of the largest segments of fish culture in Lagos State, Nigeria. However, catfish effluents, which usually deteriorate the environment, need to be controlled. The effect of paddle-wheel aerator in catfish effluent was evaluated. The volume of catfish effluent was collected into two basins and diluted at given ratios. The paddle-wheel aerator was installed in one basin, while another basin served as control in determining the impact of paddle wheel aerator on catfish effluents. Water qualities such as Total Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP), Total Ammonia (TNH3) and Nitrite (NO2-N) and Biochemical oxygen demand (BOD5) examined and ana-lysed. Results indicated that paddle-wheel aerator reduced TSS (24.4±1.5 %), TN2-N (53.3±1.2 %) , TNH3-N (65.2±1.2 %) , NO2-N (97.1±1.1 %) , TP (61.8±1.1 %) and BOD5 (54 ±1.5 %). com-pared with natural purification 33.9±1.6 % of TSS, 22.7±1.4 % of TN2-N, 29.3±1.6 % of TNH3-N, 53.9±1.2 % of NO2-N, 21.6±1.5 % of TP and 15.4±1.6 % of BOD5 at the same dilution ratio There were significant different (P ≤0.05) between paddle wheel aerator and natural purification in concen-trations reduction. The paddle wheel aerator was found to be relevant in the water quality improve-ment and thus recommend for small and medium scale fish farmers in controlling effluents.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Teck-Yee Ling ◽  
Chen-Lin Soo ◽  
Teresa-Lee-Eng Heng ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

Assessment of river water quality is essential as it provides the knowledge required to make informed decisions. Therefore, water quality was determined at 15 tributary stations located along the Batang Baleh, Sarawak. Results of the study indicate that all tributaries were well-aerated (≈ 7.7 mg/L) with pH (≈ 7.3) and conductivity (≈ 37.3 μS/cm) values falling within acceptable ranges. However, there were tributaries that showed very high turbidity (> 1000 NTU) and suspended solids (> 800 mg/L) which were contributed by the soil erosion from logging activities in the watershed. Tributary stations associated with logging activities also showed significantly higher total phosphorus and organic nitrogen. Cluster analysis demonstrated that water quality at tributary stations along the Batang Baleh exhibited a longitudinal variation from upstream to downstream regions, particularly, dissolved oxygen, five-day biochemical oxygen demand, and nitrite-nitrate nitrogen, which were found higher in upstream region and steadily decreased towards the downstream region. Two stations located at Sg. Serani and Sg. Melatai were distinct from the other stations with the highest concentrations of turbidity, total suspended solids, organic nitrogen, and total phosphorus. Thus, there is an urgent need to reduce the pollutants in the tributaries of Batang Baleh for the health of the sensitive aquatic organisms.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


Author(s):  
EUKENE OPORTO BENSIG ◽  
MARY JOYCE L. FLORES ◽  
FLEURDELIZ F. MAGLANGIT

The use of surface waters such as rivers for domestic, agricultural andindustrial purposes have made them vulnerable to pollution leading to impairedwater quality. The water quality of Lahug River in Cebu City was evaluated usingcoliforms as indicators, in relation with physicochemical parameters such as biological oxygen demand (BOD), conductivity, dissolved oxygen (DO), nitrate,pH, phosphate, salinity, temperature, total dissolved solids (TDS) and totalsuspended solids (TSS). Sampling was done once a month from November 2011to April 2012 in three stations covering the upstream, midstream and downstream.The multiple tube fermentation technique was used for the analysis of coliforms.The level of these indicator bacteria increased from the upstream towards thelower reaches of the river especially in the months of February to April; however,the difference in values across time was not significant. This implies that therewas a continuous fecal pollution in the river. There were no statistically significantcorrelations between FCs and TCs with the physicochemical parameters. Anegative relationship was observed among FCs and TCs with pH, TSS, DOand nitrate (p>0.05). These results suggest the presence of sewage and organicpollutants in the river.Keywords: Aquatic Ecology, water quality, coliform, physicochemical parameters,experimental design, Philippines


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2618
Author(s):  
Johann Alexander Vera Mercado ◽  
Bernard Engel

Land use influences water quality in streams at different spatial scales and varies in time and space. Water quality has long been associated with agricultural and urban land uses in catchments. The effects of developed, forest, pasture, and agricultural land use on nitrogen, nitrate, and nitrite (NNN); total phosphorus (TP); total suspended solids (TSS); chemical oxygen demand (COD); dissolved oxygen (DO) and total Kjeldahl nitrogen (TKN) concentrations and their sensitivity were quantified to spatial pattern differences. The linear mixed modeling framework was used to examine the importance of spatial extent on models with water quality parameters as the response variable and land use types as the predictor variable. The results indicated that land use categories on different water quality parameters were significant and dependent on the selected spatial scales. Land use exhibited a strong association with total phosphorus and total suspended solids for close reach distances. Phosphorus is not highly soluble, and it binds strongly to fine soil particles, which are transported by water via runoff. Nitrogen, nitrate, and nitrite, dissolved oxygen, chemical oxygen demand, and total Kjeldahl nitrogen concentrations were better predicted for further reach distances, such as 45 or 50 km, where the best model of nitrogen, nitrate, and nitrite is consistent with the high mobility of NO3−.


Sign in / Sign up

Export Citation Format

Share Document