scholarly journals Numerical Research of Flow Heat Transfer through Micro Channel of Mems Device

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1551-1557

Micro-channel has been increasingly applied in MEMS devices and electronics devices due to its higher efficiently heat dissipation rate, more compact size and lower cost. The present work demonstrates that the theoretical analysis of single phase micro channel has been investigated. To predict the behavior of micro-channel, the non-linear thermal hydraulic equations are developed namely mass, momentum and energy conservation, these equations are solved to predict the thermal physical properties and hydrodynamic behavior of the fluid in micro-channel. The configuration geometry of the problem has been made in design modular of commercial software ANSYS 15.0 Workbench and meshing of it has been done in ANSYS 15.0 Workbench fluent. Water is used as the working fluid in the micro-channel and the problem has been solved in ANSYS 15.0. To analyze the thermal behavior of micro-channel in force convection for various input power. Numerical simulation is carried out to calculate the wall temperature of the micro-channel, heat transfer coefficient (HTC) values etc. Next more simulation have been performed to investigate the parametric effect on the circular micro channel in terms of different diameter and length, and optimize the geometric parameters and coolant flow rate to maintain the critical temperature of the MEMS device (geometry and thermodynamic performance of micro-channel).

Author(s):  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Fumitoshi Kiyooka ◽  
Thang Nguyen ◽  
Tien Nguyen ◽  
...  

After the introduction of Pentium™ processor in 1993, the trend of the processor performance and power consumption have been increased significantly each year. Heat dissipation has been increased but in contrast the size of die on the processor has been reduced or remained the same size due to nano-size circuit technology and thus the heat flux is critically high. The heat flux was about 10–15 W/cm2 in the year 2000 and had reached 100 W/cm2 in 2006. The processor’s die surface where the heat is generated is usually small, approximately 1 cm2. For effective cooling should required least temperature gradient between the heat source and radiating components. The best known devices for effective heat transfer or heat spreading with lowest thermal resistance is heat pipe and vapor chamber. Basically, heat pipe and vapor chamber are an evacuated and sealed container which contains a small quantity of working fluid which is water. When one side of the container is heated, causing the liquid to vaporize and the vapor to move to the cold side and condensed. Since the latent heat of evaporation is large, considerable quantities of heat can be transported with a very small temperature difference from end to end. The 2-phase heat transfer device has excellent heat spreading and heat transfer characteristics, is the key element in thermal management challenge of ever power-increasing processors. In this paper, authors presented case designs using vapor chamber for cooling computer processors. Proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader. Also included in the paper are ideas and data that showed performance improvement of heat spreading devices.


2004 ◽  
Vol 126 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Rizos N. Krikkis ◽  
Stratis V. Sotirchos ◽  
Panagiotis Razelos

A numerical bifurcation analysis is carried out in order to determine the solution structure of longitudinal fins subject to multi-boiling heat transfer mode. The thermal analysis can no longer be performed independently of the working fluid since the heat transfer coefficient is temperature dependent and includes the nucleate, the transition and the film boiling regimes where the boiling curve is obtained experimentally for a specific fluid. The heat transfer process is modeled using one-dimensional heat conduction with or without heat transfer from the fin tip. Furthermore, five fin profiles are considered: the constant thickness, the trapezoidal, the triangular, the convex parabolic and the parabolic. The multiplicity structure is obtained in order to determine the different types of bifurcation diagrams, which describe the dependence of a state variable of the system (for instance the fin temperature or the heat dissipation) on a design (Conduction-Convection Parameter) or operation parameter (base Temperature Difference). Specifically the effects of the base Temperature Difference, of the Conduction-Convection Parameter and of the Biot number are analyzed and presented in several diagrams since it is important to know the behavioral features of the heat rejection mechanism such as the number of the possible steady states and the influence of a change in one or more operating variables to these states.


Author(s):  
Fangyu Cao ◽  
Sean Hoenig ◽  
Chien-hua Chen

The increasing demand of heat dissipation in power plants has pushed the limits of current two-phase thermal technologies such as heat pipes and vapor chambers. One of the most obvious areas for thermal improvement is centered on the high heat flux condensers including improved evaporators, thermal interfaces, etc, with low cost materials and surface treatment. Dropwise condensation has shown the ability to increase condensation heat transfer coefficient by an order of magnitude over conventional filmwise condensation. Current dropwise condensation research is focused on Cu and other special metals, the cost of which limits its application in the scale of commercial power plants. Presented here is a general use of self-assembled monolayer coatings to promote dropwise condensation on low-cost steel-based surfaces. Together with inhibitors in the working fluid, the surface of condenser is protected by hydrophobic coating, and the condensation heat transfer is promoted on carbon steel surfaces.


Author(s):  
Chyouhwu B. Huang ◽  
Hung-Shyong Chen ◽  
Szu-Ming Wu

Heat dissipation is a very important subject when dealing with industrial application especially in modern semiconductor related applications. Several techniques have been developed to solve the heat generated problem, such as heat dissipation device in IC packaging, high heat conductivity materials, heat tube, force convection, etc. Porous material is used in this study. Porous material is known to have large interior surface, therefore, with proper force convection; it can easily carry heat away. Micro porous ceramic (porous size: 490 μm) is attached to uninterruptible power supply (UPS) power chips. The increase of the heat dissipation rate improves UPS performance. Heat transfer properties comparisons for power chip with and without micro porous materials attached are studies. Also, heat transfer rate under different fan speeds (force convection) is studied. The results show that, heat transfer increases with the use of micro porous materials, the effectiveness ranges between 2–22%. Also, the heat transfer rate varies with air flow rate, the increase of heat transfer is about 4–6%. The dust effect was also performed; experimental results show that heat transfer rate will not be affected by the accumulated dust if a micro porous material is applied.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1929 ◽  
Author(s):  
M. Sarafraz ◽  
Mohammad Safaei ◽  
Zhe Tian ◽  
Marjan Goodarzi ◽  
Enio Bandarra Filho ◽  
...  

In the present study, we report the results of the experiments conducted on the convective heat transfer of graphene nano-platelets dispersed in water-ethylene glycol. The graphene nano-suspension was employed as a coolant inside a micro-channel and heat-transfer coefficient (HTC) and pressure drop (PD) values of the system were reported at different operating conditions. The results demonstrated that the use of graphene nano-platelets can potentially augment the thermal conductivity of the working fluid by 32.1% (at wt. % = 0.3 at 60 °C). Likewise, GNP nano-suspension promoted the Brownian motion and thermophoresis effect, such that for the tests conducted within the mass fractions of 0.1%–0.3%, the HTC of the system was improved. However, a trade-off was identified between the PD value and the HTC. By assessing the thermal performance evaluation criteria (TPEC) of the system, it was identified that the thermal performance of the system increased by 21% despite a 12.1% augmentation in the PD value. Furthermore, with an increment in the fluid flow and heat-flux applied to the micro-channel, the HTC was augmented, showing the potential of the nano-suspension to be utilized in high heat-flux thermal applications.


Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama Devi Rangisetty ◽  
Sudheer PremKumar Bellam ◽  
Ravi Gugulothu ◽  
Samuel Bellam

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using six kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips, Rectangular bar with holes and diverging conical strips, Rectangular bar with holes and converging conical strips and Rectangular bar with holes and alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with diverging conical strips is more effective compared to other inserts.


Author(s):  
E. Borquist ◽  
G. Smith ◽  
L. Weiss

Previously published research examined the overall efficiency of heat transfer through a copper plated micro-channel heat exchanger. However, since the device is sealed and composed entirely of copper, understanding the phase change, temperature field, and density field of the working fluid is difficult empirically. Given that the efficiency was shown to be greatly increased by the working fluid phase change, this understanding within the device is important to designing devices of greater efficiency and different working fluids. One method of determining device and component performance is numerical modeling of the system. Fluids that undergo phase change have long frustrated those attempting to successfully numerically model systems with acceptable stability. Over the past twenty years, the lattice Boltzmann method (LBM) has transformed the simulation of multicomponent and multiphase flows. Particularly with multiphase flows, the LBM “naturally” morphs the phase change interface throughout the model without excessive computational complexity. The relative ease with which LBM has been applied to some multicomponent/multiphase systems inspired the use of LBM to track phase change within the previously recorded experimental boundary conditions for the copper plated heat exchanger. In this paper, the LBM was used to simulate the evaporation and condensation of HFE-7200 within a capillary flow driven square micro-channel heat exchanger (MHE). All initial and boundary conditions for the simulation are exactly those conditions at which the empirical data was measured. These include temperature and heat flux measurements entering and leaving the MHE. Working fluid parameters and characteristics were given by the manufacturer or measured during experimental work. Once the lattice size, initial conditions, and boundary conditions were input into MATLAB®, the simulations indicated that the working fluid was successfully evaporating and condensing which, coupled with the capillary driven flow, allowed the system to provide excellent heat transfer characteristics without the use of any external work mechanism. Results indicated successive instances of stratified flow along the channel length. Micro-channel flow occurring due to capillary action instead of external work mechanisms made differences in flow patterns negligible. Coupled with the experimentally measured thermal characteristics, this allowed simulations to develop a regular pattern of phase interface tracking. The agreement of multiple simulations with previously recorded experimental data has yielded a system where transport properties are understood and recognized as the primary reasons for such excellent energy transport in the device.


2012 ◽  
Vol 459 ◽  
pp. 609-614
Author(s):  
Kuo Zoo Liang ◽  
A Cheng Wang ◽  
Chun Ho Liu ◽  
Lung Tasi ◽  
Yan Cherng Lin

The purpose of this research is to design a new heat sink of water-cooling. With the aid of CAE (computer aided engineering), WEDM (wire electrical discharge machining), and the concept of micro-channel design, a heat sink of water-cooling can then be built with the merit of a smaller volume and lower thermal resistance. From this paper, results of the experiment indicate that the thermal resistance of heat sink can be decreased to 0.12 °C/W with input power of 60W, flow rate of 0.6 LPM, and a better heat dissipation with the in input power of 100W or 140W can be revealed.


2001 ◽  
Author(s):  
Marc Sulfridge ◽  
Taher Saif ◽  
Norman Miller ◽  
Keith O’Hara

Abstract This paper presents experimental evidence that MEMS devices may be manipulated using beams of light. Light possesses momentum, and hence it imparts a force equal to 2W/c when perfectly reflected by a surface. Here W is the total power of the reflected light, and c is the speed of light. The radiation pressure of light can be quite significant to MEMS devices. This actuation method is demonstrated, both in air and in vacuum, by switching the state of a bi-stable MEMS device. The associated heat transfer model is also presented.


Sign in / Sign up

Export Citation Format

Share Document