scholarly journals Optimization of Heat Treatment: A Research

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2126-2128

Endurance and Improvement will be the secrets to success green fabricating is actually just really a resource of invention. Back in the last couple of years a gradual speed of evolution in heating treatment was achieved, owing to its ignorance and inadequate understandability. Just lately the market has begun eye-ing on heating treatment and surface technology whilst the absolute most vital sections ended up a lot of development and research is usually always to be performed on account of the steady desire of electricity effective, ecological friendly, optimal cost procedure. Heat treatment and surface technology would be the essential systems to improve effective usage of substances employed for vehicles, aerospace, and firearms. Once all understanding, this a critical function of heating treatment lots of complex steps such as vacuum heating healing, evolution within quenching media, laser heating curing, Electro Magnetic processing, and intensive jelling have now already been accepted that includes led in 30% boost if thickness, 25 30% decrease in procedure, 30% lowering of electricity consumption plus only ecological favorable procedure. This paper offers a brief summary of fresh tendencies of heating remedy and approach optimization having its prospective technological chances.

2020 ◽  
Vol 27 (3) ◽  
pp. 752-761 ◽  
Author(s):  
Milad Sakkaki ◽  
Farhad Sadegh Moghanlou ◽  
Soroush Parvizi ◽  
Haniyeh Baghbanijavid ◽  
Aziz Babapoor ◽  
...  

2021 ◽  
pp. 307-325
Author(s):  
Jon L. Dossett

Abstract This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.


Jurnal METTEK ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
I Ketut Suarsana ◽  
IGN Nitya Santhiarsa ◽  
DNK Putra Negara

Perlakuan panas adalah pemanasan yang diikuti dengan penahanan dan pendinginan menggunakan media quenching. Pengerasan adalah pemanasan logam hingga suhu austenit, tahan pada suhu tersebut untuk sementara waktu dan kemudian didinginkan pada media pendinginan seperti air, minyak, udara, air garam. Untuk mengatasi perubahan sifat mekanik, perlu diberikan proses perlakuan panas. Hal ini perlu dilakukan untuk menghilangkan stress internal dan mencegah terjadinya retak atau cacat. Sifat mekanis ketangguhan adalah kemampuan material untuk menyerap energi sesaat sebelum terjadi fraktur pada struktur itu. Penelitian ini membahas tentang prediksi ketangguhan properti mekanik dengan memberikan pemanasan pada temperatur 800, 850 dan 9000C dan masing-masing specimen  diquenching dengan : air tawar, air laut dan minyak. Hasil penelitian menunjukkan bahwa terjadi peningkatan sifat ketangguhan dari efek temperatur dan media pendinginan yang digunakan. Data menunjukan pada 8000C dengan media quenching minyak nilai ketangguhan adalah 33,833 kg/cm2, serta suhu 9000C dengan quenching media air nilai ketangguhan adalah 40,8747 kg/cm2). Jadi semakin meningkat temperature perlakuan,  berpengaruh terhadap sifat ketangguhan impak bahan. Heat treatment is carried out by heating followed by anchoring and using quenching medium as cooling. Hardening is metal heating to austenite temperature, hold it at a temporary temperature and then cooled to cooling media such as water, oil, air, brine. To overcome the change of mechanical properties, need to be given process of heat treatment. This is to remove internal stress and prevent the occurrence of cracks or defects. The mechanical properties of toughness are the ability of the material to absorb energy without fracturing the structure. This study discusses the prediction of toughness of mechanical properties by heating at temperatures of 800, 850 and 9000C and each specimen quenching with: freshwater, seawater and oil. The results showed that there was an increase in the toughness properties of the temperature effect and the cooling medium used. The data show on 8000C with medium quenching oil the toughness value is 33.833 kg/cm2, and the temperature of 9000C with quenching medium water toughness value is 40.8747 kg/cm2). So the increasing of treatment temperature has influence to the material toughness


1996 ◽  
Vol 38 (6) ◽  
pp. 252-254 ◽  
Author(s):  
A. V. Sverdlin ◽  
G. E. Totten ◽  
G. M. Websterz

2014 ◽  
Vol 699 ◽  
pp. 227-232
Author(s):  
Nurulhilmi Zaiedah Nasir ◽  
Mohd Ahadlin Mohd Daud ◽  
Mohd Zulkefli Selamat ◽  
Ahmad Rivai ◽  
Sivakumar Dhar Malingam

This paper investigated the effect of heat treatment on mechanical properties and microstructure of 6061 aluminium alloy. The aluminium alloys were examined in the heat treated conditions, using different quenching media, water and oil. The alloy was solution heat treated at temperature of 529oC for one, three and five hour respectively. Aging treatment was carried out at temperature of 160oC which is assumed to be the best temperature for ageing process. Hardness measurement was carried out using a Brinell Hardness Tester Machine. The results shows hardness and impact strength are inversely proportional to each other, as the hardness of 6061 aluminium alloy decreases and impact strength increases.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 40
Author(s):  
Beiyuan Gao ◽  
Yoshitomo Honda ◽  
Yoichi Yamada ◽  
Tomonari Tanaka ◽  
Yoshihiro Takeda ◽  
...  

β-tricalcium phosphate (β-TCP) granules are commonly used materials in dentistry or orthopedic surgery. However, further improvements are required to raise the operability and bone-forming ability of β-TCP granules in a clinical setting. Recently, we developed epigallocatechin gallate (EGCG)-modified gelatin sponges as a novel biomaterial for bone regeneration. However, there is no study on using the above material for preparing hydrogel incorporating β-TCP granules. Here, we demonstrate that vacuum heating treatment induced thermal cross-linking in gelatin sponges modified with EGCG and incorporating β-TCP granules (vhEc-GS-β) so that the hydrogels prepared from vhEc-GS-β showed high stability, β-TCP granule retention, operability, and cytocompatibility. Additionally, microcomputed tomography morphometry revealed that the hydrogels from vhEc-GS-β had significantly higher bone-forming ability than β-TCP alone. Tartrate-resistant acid phosphatase staining demonstrated that the number of osteoclasts increased at three weeks in defects treated with the hydrogels from vhEc-GS-β compared with that around β-TCP alone. The overall results indicate that thermal cross-linking treatment for the preparation of sponges (precursor of hydrogels) can be a promising process to enhance the bone-forming ability. This insight should provide a basis for the development of novel materials with good operativity and bone-forming ability for bone regenerative medicine.


2021 ◽  
pp. 44-50
Author(s):  
Alexander M. Ibragimov ◽  
Lyubov Y. Gnedina ◽  
Svetlana V. Gerasimova

This article proposes the usage of alternative energy instead of traditional, as safer, and environmentally friendly for the planet and all humankind in the manufacture of monolithic concrete and reinforced concrete products. Monolithic concreting in the conditions of the construction site is now widespread in the construction industry. The subject of the article is considered of the issues of heat treatment of concrete and acceleration of its hardening processes using solar energy. A brief review and classification of the most well-known and common energy sources used to harden acceleration of the concrete mix such as wind power, biofuels, solar energy, alternative hydropower is given. For consideration in the article offers the solar energy – the energy received from solar radiation. The sun as a source is an inexhaustible and affordable type of energy that supplies energy several times higher than traditional sources. In this regard, attention is paid to this field of alternative energy when using it in various spheres of the national economy, especially in the field of construction. Already existing methods of heat treatment of concrete with the help of solar technology are considered, the modern level of development of these methods is defined and further ways of their development are planned. As an example, a physical and mathematical model of a non-stationary heat transfer process in a flat reinforced concrete structure during its heat treatment using solar energy, considering the hydration of cement, is considered. Analytical expressions are obtained that allow us to model the process at any stage and actively intervene and adjust the external parameters to create rational and comfortable conditions for increasing the strength of concrete.


2006 ◽  
Vol 524-525 ◽  
pp. 433-438 ◽  
Author(s):  
Christian Redl ◽  
Christian Friesenbichler ◽  
Volker Wieser

Residual stresses are of great importance during the entire production cycle of high-grade steels. The use of modern tools based on the finite element method is steadily increasing to optimize heat treatment processes. As for industrial purposes it is often not possible to measure the entire set of material data a sensitivity analysis shows the relative influence of material properties related to phase transformation on the residual stresses during hardening. Subsequently the application of the numerical heat treatment model is shown on two examples: The magnitudes of residual stresses during the quenching of a forged bar in different quenching media are compared. The paper concludes with a numerical simulation of the heat treatment of a die used for extrusion processes. Phase distribution and residual stresses after gas quenching of the tool are presented.


2011 ◽  
Vol 110-116 ◽  
pp. 1374-1379 ◽  
Author(s):  
H.N. Reddappa ◽  
H.B. Niranjan ◽  
K.R. Suresh ◽  
Kestur Gundappa Satyanarayana

— Aluminum alloy based metal matrix composites are becoming very popular because of their outstanding properties such as high strength to weight ratio, excellent mechanical properties and improved wear properties. From literature survey it was observed that very limited report available on Aluminum alloy-beryl composites, particularly on the effect of beryl content, quenching media and heat treatment on the mechanical and wear properties of Aluminum-beryl composites. Accordingly, the aims of the present study are (i) preparation of Al6061-beryl particles by liquid metallurgy method (stir cast) with possible standardization of the beryl addition to liquid Aluminum alloy, (ii) Study the effect of different quenching media and the beryl content (2-12 wt. %) on the mechanical and wear properties of these composites in both as cast and heat treated conditions. Heat treatment procedure of solutionising at temperature of 5300C for 1hour and quenching in different media (air, water and ice) followed by natural and artificial ageing for different times was adopted. It was observed that the addition of beryl particles to Al6061 alloy improves its hardness, tensile strength and wear resistance with increasing beryl content while the heat treatment had significantly improved these properties compared to that of base alloy and as cast composites.


Sign in / Sign up

Export Citation Format

Share Document