scholarly journals Exploration of Pipelines from the use of GPR Data by Neural Network

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3711-3715

Noticing about the buried pipes is a important issue, In many regions of the world. In spite of the fact that several techniques are there. This literature is used to find out the underground pipes automatically that provides accuracy execution is underway. Which gave amazing results Achieved by the deep learning of the different discoveries found in this article offer a pipeline to detect anti-personnel pipes Adaptive Neural Networks ( applied to the Ground Penetrating Radar (GPR). The proposed algorithm is suitable to recognize if the scanning format has been received. The acquisition of GPR has a track of anti-personnel pipes. The validity of the said system is made on a real GPR receipt, although systematic training can be done to have relied upon data generated by achievements. Based on the results 95% of the accuracy of detection got achieved without testing acquisition of pipes.

Author(s):  
Rasmita Lenka ◽  
Koustav Dutta ◽  
Ashimananda Khandual ◽  
Soumya Ranjan Nayak

The chapter focuses on application of digital image processing and deep learning for analyzing the occurrence of malaria from the medical reports. This approach is helpful in quick identification of the disease from the preliminary tests which are carried out in a person affected by malaria. The combination of deep learning has made the process much advanced as the convolutional neural network is able to gain deeper insights from the medical images of the person. Since traditional methods are not able to detect malaria properly and quickly, by means of convolutional neural networks, the early detection of malaria has been possible, and thus, this process will open a new door in the world of medical science.


2015 ◽  
Vol 25 (4) ◽  
pp. 955-960 ◽  
Author(s):  
Piotr Szymczyk ◽  
Sylwia Tomecka-Suchoń ◽  
Magdalena Szymczyk

Abstract In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.


2020 ◽  
Author(s):  
Raju Singh

This report is an insight into the world of deep learning and CNN networks. It is an attempt to perform classification using neural network and deep learning for a given dataset (which is a subset from the MNIST dataset). The MNIST dataset contains 70,000 images of handwritten digits, divided into 60,000 training images and 10,000 testing images.


Author(s):  
Anuraag Velamati Et.al

The world is quickly and continuously advancing towards better technological advancements that will make life quite easier for us, human beings [22]. Humans are looking for more interactive and advanced ways to improve their learning. One such dream is making a machine think like a computer, which lead to innovations like AI and deep learning [25]. The world is running at a higher pace in the domain of AI, deep learning, robotics and machine learning Using this knowledge and technology, we could develop anything right now [36]. As a part of sub-domain, the introduction of Convolution Neural Networks made deep learning extensively strong in the domain of image classification and detection [1]..The research that we have conducted is one of its kind. Our research used Convolution Neural Network, TensorFlow and Keras.


2020 ◽  
Vol 19 (6) ◽  
pp. 1884-1893
Author(s):  
Shekhroz Khudoyarov ◽  
Namgyu Kim ◽  
Jong-Jae Lee

Ground-penetrating radar is a typical sensor system for analyzing underground facilities such as pipelines and rebars. The technique also can be used to detect an underground cavity, which is a potential sign of urban sinkholes. Multichannel ground-penetrating radar devices are widely used to detect underground cavities thanks to the capacity of informative three-dimensional data. Nevertheless, the three-dimensional ground-penetrating radar data interpretation is unclear and complicated when recognizing underground cavities because similar ground-penetrating radar data reflected from different underground objects are often mixed with the cavities. As it is prevalently known that the deep learning algorithm-based techniques are powerful at image classification, deep learning-based techniques for underground object detection techniques using two-dimensional GPR (ground-penetrating radar) radargrams have been researched upon in recent years. However, spatial information of underground objects can be characterized better in three-dimensional ground-penetrating radar voxel data than in two-dimensional ground-penetrating radar images. Therefore, in this study, a novel underground object classification technique is proposed by applying deep three-dimensional convolutional neural network on three-dimensional ground-penetrating radar data. First, a deep convolutional neural network architecture was developed using three-dimensional convolutional networks for recognizing spatial underground objects such as, pipe, cavity, manhole, and subsoil. The framework of applying the three-dimensional convolutional neural network into three-dimensional ground-penetrating radar data was then proposed and experimentally validated using real three-dimensional ground-penetrating radar data. In order to do that, three-dimensional ground-penetrating radar block data were used to train the developed three-dimensional convolutional neural network and to classify unclassified three-dimensional ground-penetrating radar data collected from urban roads in Seoul, South Korea. The validation results revealed that four underground objects (pipe, cavity, manhole, and subsoil) are successfully classified, and the average classification accuracy was 97%. In addition, a false alarm was rarely indicated.


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
pp. 096372142199033
Author(s):  
Katherine R. Storrs ◽  
Roland W. Fleming

One of the deepest insights in neuroscience is that sensory encoding should take advantage of statistical regularities. Humans’ visual experience contains many redundancies: Scenes mostly stay the same from moment to moment, and nearby image locations usually have similar colors. A visual system that knows which regularities shape natural images can exploit them to encode scenes compactly or guess what will happen next. Although these principles have been appreciated for more than 60 years, until recently it has been possible to convert them into explicit models only for the earliest stages of visual processing. But recent advances in unsupervised deep learning have changed that. Neural networks can be taught to compress images or make predictions in space or time. In the process, they learn the statistical regularities that structure images, which in turn often reflect physical objects and processes in the outside world. The astonishing accomplishments of unsupervised deep learning reaffirm the importance of learning statistical regularities for sensory coding and provide a coherent framework for how knowledge of the outside world gets into visual cortex.


Sign in / Sign up

Export Citation Format

Share Document