scholarly journals Influence of Bio-Oils as Cutting Fluids on Chip Formation and Tool Wear during Drilling Operation of Mild Steel

2019 ◽  
Vol 8 (2) ◽  
pp. 3328-3330

The importance of health and environment has forced Machining Industries to reduce the application of Petroleum-based cutting fluid. But to ease the machining process and to increase the tool life, cutting fluids must be used. Research has been done on vegetable oils as cutting fluids which is easy for disposal and does not affect the environment and the operator’s health [1] . This paper discusses the machinability and tool life during drilling of a mild steel work piece using Neem, Karanja, blends of 50%Neem-50%Karanja, 33.3%Neem-66.6%Karanja, 66.6%Neem-33.3%Karanja as cutting fluid. Results obtained using petroleum-based oil are compared with the results obtained by using above mentioned combination of oils and also with dry cutting conditions.

2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2021 ◽  
Vol 9 (04) ◽  
pp. 223-235
Author(s):  
Rajeev Sharma ◽  
◽  
Binit Kumar Jha ◽  
Vipin Pahuja ◽  
◽  
...  

Todays, due to the environmental concerns, growing contamination and pollution regulations, the demand for renewable and biodegradable cutting fluids is increasing day by day. Environmental friendly machining is one of the latest approach which is economical and also eco-friendly that improve the machinability. Different types of environmental friendly machining techniques are available e.g. MQL machining, cryogenic machining, dry machining and high pressure cooling approach. In this article, an attempt is made regarding environmental friendly machining processing, including different types of cutting fluids and machining techniques. The Knowledge of cutting fluid and its processing conditions is of critically importance to maximize the efficiency of cutting fluids in any machining process. In general, the generation of heat in the cutting zone due to friction at the tool-chip interface and the friction between the safety surface of the tool and the work piece is always the deciding factor on the quality of the work piece surface. In any manufacturing industries or company two factors play important role in machinability and productivity e.g. surface quality and tool wear. The main objective of this review article that analysis the different environmental friendly machining techniques and encourages the cooling approach in metal cutting operation. So finally, after the literature survey found that environmental friendly machining approach is cost effective machining process and also eco-friendly machining process.


Author(s):  
Rosemar Batista da Silva ◽  
Álisson Rocha Machado ◽  
Déborah de Oliveira Almeida ◽  
Emmanuel O. Ezugwu

The study of cutting fluid performance in turning is of great importance because its optimization characteristics has associated benefits such as improved tool life and overall quality of machined components as well as reduction in power consumption during machining. However, there are recent concerns with the use of cutting fluids from the environmental and health standpoints. Since environmental legislation has become more rigorous, the option for “green machining” attracts the interest of several manufacturing companies. It is important to consider the cost of machining which is associated with tool wear, depending on the cutting environment. The use of vegetable oil may be an interesting alternative to minimize the health and environmental problems associated with cutting fluids without compromising machining performance. This paper presents a comparative study of mineral and vegetable cutting fluids in terms of tool wear after turning SAE 1050 steel grade with cemented carbide cutting tools. Constant depth of cut of 2mm and variable cutting speed (200 and 350 m/min) and feed rate (0.20 and 0.32 mm/rev) were employed. Test results suggest that is possible to achieve improvement in machinability of the material and increase tool life by using vegetable cutting fluid during machining. Tool life increased by about 85% when machining with vegetable-based fluids compared to mineral-based fluids. Analysis of the worn tools, however, revealed a more uniform wear on the worn flank face when machining with mineral-based fluids.


2010 ◽  
Vol 97-101 ◽  
pp. 2058-2061 ◽  
Author(s):  
Hui Wang ◽  
Rong Di Han ◽  
Yang Wang

The machinability of Titanium Alloy Ti6Al4V is poor, the traditional methods to machining is application of cutting fluids with the active additives which cause environmental pollution and health problems. In this paper, the dry electrostatic cooling was applied instead of cutting fluid for the aim of green cutting Ti6Al4V. The ionized device and gas supply system was set up, the effects of dry electrostatic cooling, emulsion oil and dry cutting on tool wear have been examined in turning of Ti6Al4V with carbide tools YG8, the curve between tool flank wear and cutting time was proposed, and the equation between cutting speed and tool life was set up. The results of experiments indicated that application of dry electrostatic cooling reduced the tool wear and increased the tool life. The research results show that clean production was achieved in metal cutting associated with dry electrostatic cooling.


Author(s):  
Richard Y. Chiou ◽  
Vitaliy Aynbinder ◽  
L. G. Stepanskiy ◽  
Lin Lu ◽  
Shreepud Rauniar ◽  
...  

Tool wear of machine tools and large usage of cutting fluids is one of the major problems in manufacturing. Cutting fluids are used to cool down the tool and have been shown to cause environmental problems in machine shops. Tool life and temperature have an inverse relationship, namely that the higher the temperature at the tool-chip interface is, the lower the tool life will be, and vice-versa. In this paper an innovative approach was taken to create an analytical solution to the effect of the embedded heat pipe on temperature of the tool and tool life. It has been well documented in the industry that the major factors that contribute to tool wear are the material properties of the tool insert and the work piece, cutting speed, depth of cut and feed rate. The analytical approach taken in this project is unique because it does not only take into account the complex boundary conditions of heat transfer but also the aforementioned factors and variety of possible cutting conditions. The analytical solution is in the form of set of equations which were developed to simulate the behavior of the tool insert under normal cutting conditions. Both cases, with and without heat-pipe were considered. The predicted temperature data was then compared to the existing experimental data, with very good results. In the end the project yields a quantitative evaluation on influence of mechanical properties of insert, work piece, heat pipe and cutting conditions on tool wear.


2014 ◽  
Vol 493 ◽  
pp. 468-472
Author(s):  
Rusnaldy ◽  
Norman Iskandar ◽  
Yusuf Umardani ◽  
Paryanto ◽  
Susilo Adi Widyanto

The use of cutting fluid is to reduce the friction between tool and workpiece, reduce and dissipate generated heat. The application of cutting fluid is also to improve the surface quality of workpiece and increase the tool life. On the other side, cutting fluid contains chemical carcinogens that causes serious health risks for machine operators and have inherent waste disposal concern on the environment. Due to these problems, some alternative have been sought to minimize or avoid the use of cutting fluid in machining processes. Air cooling techniques were proposed as alternative cooling mediums, i.e air jet cooling (AJC) and cooled-air jet cooling (CAJC), the liquid less method. In this work, air cooling techniques were investigated to be a possible solution of machining problem for cooling medium. This studi was also motivated by economics point of view that the application of AJC and CAJC would be more efficient than liquid method. The purpose of this study is to investigate the effect of AJC and CAJC on turning process of St 60 steel because it is used widely for production of components especially in small and medium enterprises in Indonesia. The tool tip temperatures, surface roughness and tool wear were measured for a range of cutting times. For a comparison purposes, experiments were also carried out with using traditional liquid coolant and without any cooling applied to the tool tip (dry cutting method). Experiments have shown that air cooling technques (AJC, and CAJC) can be used as cooling medium in machining process. Experimental results show that machining with CAJC have shorter tool life compare to machining with AJC and dry cutting, but liquid coolant in this studi is still the best cooling medium for machining of St 60 steel..


2012 ◽  
Vol 190-191 ◽  
pp. 93-96
Author(s):  
Yun Chao Li ◽  
Yu Hua Zhang ◽  
Bo Sun

Green cutting processing technology is a kind of full consideration of the environmental and resource issues processing techniques, It requires throughout the process do to the environment pollution to the minimum and the utilization rate of the highest. In the machining process without any cutting fluid of dry cutting is control environmental pollution source of a green manufacturing process, it can have clean scraps, no pollution, save the cutting fluid and the processing of costs, can further reduce the production cost. Therefore, the future direction of the cutting process is not or with as little as you cutting fluids, and energetically develop on the ecological environment and human health negative effects of small, processing the superior performance of cutting fluids, and environmental work to completely harmless green cutting fluid development direction.


2021 ◽  
Vol 23 (04) ◽  
pp. 143-155
Author(s):  
Shrikant U. Gunjal ◽  
◽  
Sudarshan B. Sanap ◽  
Nilesh C. Ghuge ◽  
Satish Chinchanikar ◽  
...  

Cutting fluid is a vital part of the machining process. Cutting fluid is significantly applied tolower the friction and heat generated in the machining zone. It also helps in easy chip removal, protection against oxidation, tool life improvement, and an overall improvement in the quality of the product. The current industrial practices are majorly emphasized on mineral-based oil application under flood lubrication to achieve superior quality. However, these oils and techniques are toxic and environmentally unfriendly. Machining under dry or with minimum quantity lubrication (MQL) has been mostly preferred to eliminate the use of abundant oil. The current research work has established the promising potential for vegetable oils as a cutting fluid under MQL during turning of AISI 4130 steel. The results inferred that vegetable-based cutting fluids performed better over mineral-based cutting fluids in terms of lower values of machined surface roughness, tool wear, cutting forces, and chip-tool interface temperature. The MQL machining performance in terms of cutting forces, surface roughness and tool life has been observed better in comparison to machining under flood and dry cutting conditions.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 773
Author(s):  
Elisabet Benedicto ◽  
Eva María Rubio ◽  
Laurent Aubouy ◽  
María Ana Sáenz-Nuño

The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl – which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


Sign in / Sign up

Export Citation Format

Share Document