scholarly journals Numerical Analysis of Protrusion Effect over an Airfoil at Reynolds Number -105

2019 ◽  
Vol 8 (2) ◽  
pp. 2583-2588

Need of micro aerial vehicles and Unmanned Air Vehicles is increasing due to military, defense and civilian requirements. These vehicles fly at very small Reynolds numbers and have to move in confined spaces with a bare minimum speed, to achieve high lift coefficient is the main concern. The main focus of this research paper is to carry out the computational analysis and study the unsteady flow over NACA0012 airfoil with right angle triangular protrusion at the Reynolds number 105 . The location of the protrusion is 0.05c, with three different heights of protrusion 0.005c, 0.01c, and 0.02c, normal to the surface of the airfoil. Geometric modeling and grid generation are created using the ICEM CFD software and numerical analysis carried out using commercial CFD Software at various angle of attacks ranging from 00 to 160 with 2 0 intervals. Numerical validation has done and compared. The results obtained from the research work is recommend that for smaller protrusions the lift and drag coefficients are unaffected in the low angle of attacks while the lift characteristic is significantly improved at the higher angle of attacks.

2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Jaswar Koto ◽  
Abdul Khair Junaidi

Vortex-induced vibration is natural phenomena where an object is exposed to moving fluid caused vibration of the object. Vortex-induced vibration occurred due to vortex shedding behind the object. One of the offshore structures that experience this vortex-induced vibration is riser. The riser experience vortex-induced vibration due to vortex shedding caused by external load which is sea current. The effect of this vortex shedding to the riser is fatigue damage. Vortex-induced vibration of riser becomes the main concern in oil and gas industry since there will be a lots of money to be invested for the installation and maintenance of the riser. The previous studies of this vortex-induced vibration have been conducted by experimental method and Computational Fluid Dynamics (CFD) method in order to predict the vortex shedding behaviour behind the riser body for the determination of way to improve the riser design. This thesis represented the analysis of vortex induced vibration of rigid riser in two-dimensional. The analysis is conducted using Computational Fluid Dynamic (CFD) simulations at Reynolds number at 40, 200, 1000, and 1500. The simulations were performed using Spalart-Allmaras turbulent model to solve the transport equation of turbulent viscosity. The simulations results at Reynolds number 40 and 200 is compared with the other studies for the validation of the simulation, then further simulations were conducted at Reynolds number of 1000 and 1500. The coefficient of lift and drag were obtained from the simulations. The comparison of lift and drag coefficient between the simulation results in this study and experiment results from the other studies showed good agreement. Besides that, the in-line vibration and cross-flow vibration at different Reynolds number were also investigated. The drag coefficient obtained from the simulation results remain unchanged as the Reynolds number increased from 200 to 1500. The lift coefficient obtained from the simulations increased as the Reynolds number increased from 40 to 1500.


Author(s):  
Venkata Ravishankar Kasibhotla ◽  
Danesh Tafti

The paper is concerned with the prediction and analysis of dynamic stall of flow past a pitching NACA0012 airfoil at 1 million Reynolds number based on the chord length of the airfoil and at reduced frequency of 0.25 in a three dimensional flow field. The turbulence in the flow field is resolved using large eddy simulations with the dynamic Smagorinsky model at the sub grid scale. The development of dynamic stall vortex, shedding and reattachment as predicted by the present study are discussed in detail. This study has shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. The lift coefficient agrees well with the measurements during the upstroke. However, there are differences during the downstroke. The computed lift coefficient undergoes a sharp drop during the start of the downstroke as the convected leading edge vortex moves away from the airfoil surface. This is followed by a recovery of the lift coefficient with the formation of a secondary trailing edge vortex. While these dynamics are clearly reflected in the predicted lift coefficient, the experimental evolution of lift during the downstroke maintains a fairly smooth and monotonic decrease in the lift coefficient with no lift recovery. The simulations also show that the reattachment process of the stalled airfoil is completed before the start of the upstroke in the subsequent cycle due to the high reduced frequency of the pitching cycle.


2013 ◽  
Vol 393 ◽  
pp. 366-371
Author(s):  
C.F. Mat Taib ◽  
Abdul Aziz Jaafar ◽  
Salmiah Kasolang

The study on the effect of winglet shape in wing design has been a focus of many researchers. Nevertheless, the effect of cant angle on the wing performances at low Reynolds number has not been fully explored. This paper describes the effect of a single semi-circular shaped winglet attached with a rectangular wing model to lower the drag without increasing the span of the wing. Aerodynamic characteristics for the rectangular wing (NACA 65-3-218) with and without semi-circular winglets have been studied using STAR CCM+ 4.0. This numerical analysis is based on Finite Volume Approach. Simulations were carried out on the rectangular wing model with and without winglet at aspect ratio of 2.73 and Reynolds number of 0.16 x 10 6 for various angles of attack. From the numerical analysis, wing performance characteristics in terms of lift coefficient CL, drag coefficient CD, and lift-to-drag ratio, CL/CD were obtained. It was found that the addition of a semi-circular winglet has resulted in a larger lift curve slope and higher Lift-to-Drag ratio in comparison with the case of a wing without winglet. Further investigation has revealed that a wing with semi-circular winglet with cant angle of 45 degree has produced the best Lift-to-Drag ratio, CL/CD.


1961 ◽  
Vol 11 (2) ◽  
pp. 244-256 ◽  
Author(s):  
J. H. Gerrard

The oscillating lift and drag on circular cylinders are determined from measurements of the fluctuating pressure on the cylinder surface in the range of Reynolds number from 4 × 103 to just above 105.The magnitude of the r.m.s. lift coefficient has a maximum of about 0.8 at a Reynolds number of 7 × 104 and falls to about 0.01 at a Reynolds number of 4 × 103. The fluctuating component of the drag was determined for Reynolds numbers greater than 2 × 104 and was found to be an order of magnitude smaller than the lift.


2020 ◽  
Vol 01 (02) ◽  
pp. 29-36
Author(s):  
Md Rhyhanul Islam Pranto ◽  
Mohammad Ilias Inam

The aim of the work is to investigate the aerodynamic characteristics such as lift coefficient, drag coefficient, pressure distribution over a surface of an airfoil of NACA-4312. A commercial software ANSYS Fluent was used for these numerical simulations to calculate the aerodynamic characteristics of 2-D NACA-4312 airfoil at different angles of attack (α) at fixed Reynolds number (Re), equal to 5×10^5 . These simulations were solved using two different turbulence models, one was the Standard k-ε model with enhanced wall treatment and other was the SST k-ω model. Numerical results demonstrate that both models can produce similar results with little deviations. It was observed that both lift and drag coefficient increase at higher angles of attack, however lift coefficient starts to reduce at α =13° which is known as stalling condition. Numerical results also show that flow separations start at rare edge when the angle of attack is higher than 13° due to the reduction of lift coefficient.


2020 ◽  
Vol 10 (5) ◽  
pp. 1870
Author(s):  
Zhongying Xiong ◽  
Xiaomin Liu

This work focuses on flow past a circular cylinder at a subcritical Reynolds number. Although this classical study has been a concern for many years, it is still a challenging task due to the complexity of flow characteristics. In this paper, a high-efficiency very large-eddy simulation method is adopted and verified in order to handle the oscillating boundary. A series of numerical simulations are conducted to investigate the transient flow around the oscillating cylinder. The results show that the vortex shedding mode varies with an increase in the excitation amplitude and the excitation frequency. Vortex shedding is a lasting process under the condition of a low excitation amplitude that leads to irregular fluctuations of the lift and drag coefficients. For a vortex shedding mode that exhibits a strong vortex pair and a weak vortex pair or a weak single vortex, the temporal evolution of the lift coefficient of the oscillating cylinder shows irregular ”jumping” at a specific time per cycle corresponding to the shedding of the strong vortex pair. The vortex shedding mode and the frequency and time of the vortex shedding co-determine the temporal evolutions of the lift and drag coefficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shubham Jain ◽  
Nekkanti Sitaram ◽  
Sriram Krishnaswamy

Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.


Author(s):  
Boris A. Mandadzhiev ◽  
Michael K. Lynch ◽  
Leonardo P. Chamorro ◽  
Aimy A. Wissa

Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. In order for a fixed wing aircraft to maintain the lift necessary for sustained flight at very low speeds and large angles of attack (AoA), the wing shape has to change. This is often achieved by using deployable aerodynamic surfaces, such as flaps or slats, from the wing leading or trailing edges. In nature, one such device is a feathered structure on birds’ wings called the alula. The span of the alula is 5% to 20% of the wing and is attached to the first digit of the wing. The goal of the current study is to understand the aerodynamic effects of the alula on wing performance. A series of wind tunnel experiments are performed to quantify the effect of various alula deployment parameters on the aerodynamic performance of a cambered airfoil (S1223). A full wind tunnel span wing, with a single alula located at the wing mid-span is tested under uniform low-turbulence flow at three Reynolds numbers, Re = 85,000, 106,00 and 146,000. An experimental matrix is developed to find the range of effectiveness of an alula-type device. The alula relative angle of attack measured measured from the mean chord of the airfoil is varied to modulate tip-vortex strength, while the alula deflection is varied to modulate the distance of the tip vortex to the wing surface. Lift and drag forces were measured using a six axis force transducer. The lift and drag coefficients showed the greatest sensitivity to the the alula relative angle of attack, increasing the normalized lift coefficient by as much as 80%. Improvements in lift are strongly correlated to higher alula angle, with β = 0° – 5°, while reduction in the drag coefficient is observed with higher alula tip deflection ratios and lower β angles. Results show that, as the wing angle of attack and Reynolds number are increased, the overall lift co-efficient improvement is diminished while the reduction in drag coefficient is higher.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012066
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The NACA4415 airfoil was numerically simulated with the help of the Fluent software to analyze its aerodynamic characteristics. Results are acquired as follows: The calculation accuracy of Fluent software is much higher than that of XFOIL software; the calculation result of SST k-ω(sstkw) turbulence model is closest to the experimental value; within a certain range, the larger the Reynolds number is, the larger the lift coefficient and lift-to-drag ratio of the airfoil will be, and the smaller the drag coefficient will be; when the angle of attack is less than the optimal angle of attack, the Reynolds number has less influence on the lift-to-drag coefficient and the lift-to-drag ratio; as the Reynolds number increases, the optimal angle of attack increases slightly, and the applicable angle of attack range for high lift-to-drag ratios becomes smaller.


Author(s):  
Mohammad J. Izadi ◽  
Mahdi Mirtorabi

In this paper a cavitating flow around a three dimensional tapered hydrofoil in an incompressible fluid is modeled and studied. The variables in this study are the taper ratio, angle of attack and the Reynolds number. The taper ratio changes from 0.2 to 1, the angles of attack varies from −2 to 12 degrees and all these are computed at two Reynolds numbers (Re = 5.791·107 and Re = 1.99·108). The flow is assumed to be unsteady and isothermal. Coefficients of drag and lift and also the cavity length are computed numerically. Comparing the numerical results of five investigated models (five tapered hydrofoils) and the work done by Kermeen experimentally, it can be seen that the tapered hydrofoil in some cases gave better results, reducing the cavity length and improving the lift coefficient. At the low Reynolds number, the length of the cavity is calculated to be small in comparison with the length gained at the high Reynolds number, and therefore the change of the taper and the angles of attack did change the amount of the lift coefficient as much. For high Reynolds number, as the angle of attack increased, the tapering effect became more important and the best lift coefficient and minimum cavity length is obtained at a taper ratio of 0.4 for an averaged angles of attack.


Sign in / Sign up

Export Citation Format

Share Document