Computational Study of Taper Effect of a Hydrofoil at Different Reynolds Numbers on the Length of Cavity and Lift and Drag Coefficients

Author(s):  
Mohammad J. Izadi ◽  
Mahdi Mirtorabi

In this paper a cavitating flow around a three dimensional tapered hydrofoil in an incompressible fluid is modeled and studied. The variables in this study are the taper ratio, angle of attack and the Reynolds number. The taper ratio changes from 0.2 to 1, the angles of attack varies from −2 to 12 degrees and all these are computed at two Reynolds numbers (Re = 5.791·107 and Re = 1.99·108). The flow is assumed to be unsteady and isothermal. Coefficients of drag and lift and also the cavity length are computed numerically. Comparing the numerical results of five investigated models (five tapered hydrofoils) and the work done by Kermeen experimentally, it can be seen that the tapered hydrofoil in some cases gave better results, reducing the cavity length and improving the lift coefficient. At the low Reynolds number, the length of the cavity is calculated to be small in comparison with the length gained at the high Reynolds number, and therefore the change of the taper and the angles of attack did change the amount of the lift coefficient as much. For high Reynolds number, as the angle of attack increased, the tapering effect became more important and the best lift coefficient and minimum cavity length is obtained at a taper ratio of 0.4 for an averaged angles of attack.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shubham Jain ◽  
Nekkanti Sitaram ◽  
Sriram Krishnaswamy

Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.


Author(s):  
Mohammad J. Izadi ◽  
Mahdi Mirtorabi

In this study a cavitating flow around a three dimensional twisted hydrofoil in an incompressible fluid is modeled. The variables in this study are; the twist angle, the angle of attack and the Reynolds number. The twist angle changes from 0.0 to 5.0 degrees with respect to the root, the angles of attack changes from −2 to 12 degrees and all these are computed at two Reynolds numbers of 5.791·107, and 1.99·108. The flow is assumed to be unsteady and isothermal. Coefficients of the drag and lift and also the cavity length are computed numerically. Numerical simulations are carried out and the cavitation number is set at σ = 1.2. The numerical results show that, as the twist angle increases, the cavity length (along the chord) did not change much, but the width of the cavity (along the span) increased very much, and this caused an increase of lift coefficient. However, a twisted hydrofoil has more variation of span-wise lift distribution, which is resulted by the downwash at the center part and an up-wash at the tips of the hydrofoil. Comparing the lift and the drag coefficient results of two twisted and no-twisted hydrofoil, the twisted hydrofoil show some notable increase of lift and a decrease of the drag coefficients. The best results are obtained around 5 degrees of twist angle.


2014 ◽  
Vol 543-547 ◽  
pp. 434-440
Author(s):  
Qiang Liu ◽  
Wei Xie ◽  
Wen Yang Duan ◽  
Chang Hong Hu

Based on fully structured grids parallel numerical simulations of flow around a cylinder under different Reynolds number are carried out. Two-dimensional and three-dimensional models are established at the same time under specific Reynolds number, and further analyze of three-dimensional flow characteristics as well as the generated influence to overall physical quantities are presented. In order to explore efficient high Reynolds number turbulence models, a comparative research of the LES model without wall functions and the Spalart-Allmaras turbulence model is carried out. In order to improve the computational efficiency, a domain decomposition parallel computing strategy is used, and a calculation strategy that results of coarse grid was assigned to fine grid as initial field value by 3D linear interpolation is presented. Simulation results show that: Drag coefficient and Strouhal number have very good consistency with the experimental data, which verifies the correctness of the calculation method; Even if at low Reynolds number (200≤Re≤300), using a three-dimensional model is still necessary; While in the high Reynolds number stage, compared to LES model without wall functions, Spalart-Allmaras model is more applicable and more efficient.


1999 ◽  
Vol 395 ◽  
pp. 211-236 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.


2008 ◽  
Vol 617 ◽  
pp. 355-379 ◽  
Author(s):  
VAGESH D. NARASIMHAMURTHY ◽  
HELGE I. ANDERSSON ◽  
BJØRNAR PETTERSEN

Direct numerical simulation (DNS) of vortex shedding behind a tapered plate with the taper ratio 20 placed normal to the inflow has been performed. The Reynolds numbers based on the uniform inflow velocity and the width of the plate at the wide and narrow ends were 1000 and 250, respectively. For the first time ever cellular vortex shedding was observed behind a tapered plate in a numerical experiment (DNS). Multiple cells of constant shedding frequency were found along the span of the plate. This is in contrast to apparent lack of cellular vortex shedding found in the high-Reynolds-number experiments by Gaster & Ponsford (Aero. J., vol. 88, 1984, p. 206). However, the present DNS data is in good qualitative agreement with similar high-Reynolds-number experimental data produced by Castro & Watson (Exp. Fluids, vol. 37, 2004, p. 159). It was observed that a tapered plate creates longer formation length coupled with higher base pressure as compared to non-tapered (i.e. uniform) plates. The three-dimensional recirculation bubble was nearly conical in shape. A significant base pressure reduction towards the narrow end of the plate, which results in a corresponding increase in Strouhal number, was noticed. This observation is consistent with the experimental data of Castro & Rogers (Exp. Fluids, vol. 33, 2002, p. 66). Pressure-driven spanwise secondary motion was observed, both in the front stagnation zone and also in the wake, thereby reflecting the three-dimensionality induced by the tapering.


2016 ◽  
Vol 798 ◽  
pp. 88-139 ◽  
Author(s):  
Mohit P. Dalwadi ◽  
S. Jonathan Chapman ◽  
Sarah L. Waters ◽  
James M. Oliver

The method of matched asymptotic expansions is used to study the canonical problem of steady laminar flow through a narrow two-dimensional channel blocked by a tight-fitting finite-length highly permeable porous obstacle. We investigate the behaviour of the local flow close to the interface between the single-phase and porous regions (governed by the incompressible Navier–Stokes and Darcy flow equations, respectively). We solve for the flow in these inner regions in the limits of low and high Reynolds number, facilitating an understanding of the nature of the transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant analytical progress is made in the high Reynolds number limit, and we explore in detail the rich boundary layer structure that occurs. We derive general results for the interfacial stress and for the conditions that couple the flow in the outer regions away from the interface. We consider the three-dimensional generalization to unsteady laminar flow through and around a tight-fitting highly permeable cylindrical porous obstacle within a Hele-Shaw cell. For the high Reynolds number limit, we give the coupling conditions and interfacial stress in terms of the outer flow variables, allowing information from a nonlinear three-dimensional problem to be obtained by solving a linear two-dimensional problem. Finally, we illustrate the utility of our analysis by considering the specific example of time-dependent forced far-field flow in a Hele-Shaw cell containing a porous cylinder with a circular cross-section. We determine the internal stress within the porous obstacle, which is key for tissue engineering applications, and the interfacial stress on the boundary of the porous obstacle, which has applications to biofilm erosion. In the high Reynolds number limit, we demonstrate that the fluid inertia can result in the cylinder experiencing a time-independent net force, even when the far-field forcing is periodic with zero mean.


Sign in / Sign up

Export Citation Format

Share Document