scholarly journals Effects of Beam Members on Performance of Buildings under Seismic Forces

2019 ◽  
Vol 8 (3) ◽  
pp. 7797-7803

The main aim of the paper is to present an analysis to study on non-linear seismic analysis of reinforced concrete (RC) framed buildings as per the provisions of Indian code IS1893-2016 to evaluate the response of the building configurations depending upon the section sizes of the horizontal members; beams and as per variation in its cross-sectional area. The response of buildings has been noted in terms of quantities as the time period of buildings.Indian seismic code IS 1893 has been employed for the design provisions of the seismic analysis and the structures have been evaluated for seismic zone II. The design software STAAD.Pro has been used for the dynamic analysis.The response of the structure under lateral force system, induced due to seismic activities is must be analysed to understand the behaviour of structure under dynamic forces. The paper evaluates the most common but important response factors of the structure which are most important in the design of building. The paper also shows the detailed results of the time period of buildings for various building configuration. The evaluated results have been tabulated and analysed with the help of a comparative study of the obtained data. The work is useful for better understanding of the performance of the reinforced concrete buildings as per the different sizes and sections and stiffness of the beam elements.

Seismic analysis of structure is employed to make the structure enable to resist the seismic forces and perform against the factors causing the failure of the structure under dynamic excitation. Among various response factors, the base shear and time period of buildings are predominant factors used in the analysis and design of the structure. The prime objective of the paper is to present an analytical study on non-linear seismic analysis of moment resisting framed buildings (as per Indian code IS1893 – 2016) to evaluate the base shear of different configurations of buildings according to different mode combination methods. The obtained results have been presented the comparative analysis of different combination methods. The paper also presents the evaluated results in the form of the time period values of the different buildings depending upon variation in its configuration. As a result, the responses of multistoried moment-resisting framed buildings have been evaluated for various models of considered buildings based on different mode combination methods, and the results of obtained responses have been analyzed in a comparative manner to understand the behaviour of buildings under various methods and configuration conditions. The work presented in the paper can support to develop better understanding of structural response and efficient designing of structures.


2020 ◽  
Vol 9 (1) ◽  
pp. 1838-1847

Two-way slab directly rests on column known as flat plates, in flat slab building formwork is simple as compare to normal slab (that means slab rest on beam column frame building) and reinforcement layout are also simple and storey height decreases. In flat slab building check second order effect (second order effect known as p-delta effect). P-delta analysis means laterally displacing structures (for high rise building) with gravity loads will deflect. In P-delta analysis when lateral force act on member then it will deflect at delta distance and create secondary moments. For stability design of a building P-delta analysis is required. In the present work seismic analysis (consider zone V & soft soil) of a multi storey flat slab building with and without P-delta effects is analysed by using ETAB software. The seismic zone factor of 0.36 is considered. From the analysis check displacement and drift of flat slab building at different storey (G+9, G+19, and G+ 29) of flat slab building.


RC intze water tanks are constructed for storage and suppling of water through a certain height with adequate pressure of water distribution. Many overhead water tanks affected due to certainty like earthquake that can induce large lateral forces. So, there is a necessity to Understand and examine the behavior of intze tank supported on framing in context to different soil types under the seismic forces. This paper evaluates the experimental output of seismic analysis that compares shear and moments at base and also hydrodynamic pressure at wall and base slab for various seismic zone and different type of soil condition at different staging heights.


RC intze water tanks are constructed for storage and suppling of water through a certain height with adequate pressure of water distribution. Many overhead water tanks affected due to certainty like earthquake that can induce large lateral forces. So, there is a necessity to Understand and examine the behavior of intze tank supported on framing in context to different soil types under the seismic forces. This paper evaluates the experimental output of seismic analysis that compares shear and moments at base for different seismic zone (II, III, IV, V) in different type of soil conditions.


Author(s):  
Stalin Alcívar ◽  
Yordy Mieles ◽  
Jean Pierre Ostaiza

  La ciudad de Portoviejo cuenta desde el 2017 con espectros de diseño específicos resultados del estudio de microzonificación sísmica del cantón. Esta investigación se origina por el escaso uso que se da a los espectros de diseño indicados en el estudio de microzonificación por parte de calculistas estructurales, quienes continúan usando los espectros que se indican en la Norma Ecuatoriana de la Construcción del 2015 para analizar y diseñar las estructuras, tanto de hormigón armado como de acero estructural. El objetivo de esta investigación es medir las variaciones de desplazamientos laterales y esfuerzos globales en estructuras aporticadas de hormigón armado mediante un análisis sísmico, empleando tanto los espectros de la norma ecuatoriana como los espectros de la microzonificación sísmica de Portoviejo. Se analizaron seis estructuras, tres de ellas regulares en planta y en elevación, las cuales eran de tres, cinco y ocho niveles de altura y otras tres estructuras irregulares de tres y dos niveles. Las estructuras fueron modeladas en Etabs, y se usó el análisis sísmico modal espectral en que se variaba el espectro de diseño. En cuanto a los espectros de la microzonificación se usaron los indicados para las microzonas M4 y M5 mientras que los espectros de la norma considerados corresponden a la zona sísmica VI en suelos tipo D y E consistentes con los tipos de suelo de las microzonas M4 y M5. Adicionalmente se evaluó la variación del área de aceros de refuerzo en elementos principales. De este esta investigación se puede concluir que: i) en las estructuras de dos, tres y cinco niveles, los desplazamientos se amplificaron al emplear los espectros de la microzonificación sísmica, la microzona 4 entrega el mayor valor. En la estructura de ocho niveles los espectros de la norma dan los mayores desplazamientos. ii) en la estructura de ocho niveles los mayores esfuerzos de corte y momento se presentaron al emplear los espectros de la norma ecuatoriana de la construcción. iii) al diseñar las estructuras los resultados no presentaron una variación significativa, se obtuvo una mínima diferencia en cuanto a los aceros de refuerzos longitudinales. iv) en la ciudad de Portoviejo, las estructuras construidas con frecuencia no superan los tres niveles y al ser diseñadas con los espectros de la norma se estaría subestimando la aceleración sísmica de diseño. Se recomienda el uso de los espectros de la microzonificación, que son resultado de un trabajo específico para las condiciones de la ciudad.   Palabras claves: Microzonificación Sísmica, Espectros de Diseño, Análisis Sísmico, Diseño Sísmico.   Abstract— The Portoviejo city has since 2017 with specific design spectrum results of the study of seismic microzoning in the canton. This research originates from the limited use given to the design spectrum indicated in the microzonation study by structural engineers, who continue to use the spectrum indicated in the 2015 Ecuadorian Construction Standard to analyze and design the structures, both reinforced concrete and structural steel. The objective of this investigation is to measure the variations of lateral displacements and global efforts in structures provided with reinforced concrete to be analyzed seismically using both the spectrum of the ecuadorian norms and the spectrum of the seismic microzoning of Portoviejo. Six structures were analyzed, three of them regular in plan and elevation, which were three, five and eight levels high and three other irregular structures of three and two levels. The structures were modeled in Etabs, and the spectral modal seismic analysis was used, varying the design spectrum. Regarding the microzonation spectrum, those indicated for microzones M4 and M5 were used, while the spectrum of the standard considered correspond to seismic zone VI in soils type D and E consistent with the soil types of microzones M4 and M5. Additionally, the variation of the area of reinforcement steels in main elements was evaluated. From this research it can be concluded that: i) in the structures of two, three and five levels, the displacements were amplified by using the spectrum of the seismic microzonation, the microzone 4 generated the highest value. In the eight-level structure the spectrum of the norm give the greatest displacements. ii) in the eight-level structure the greatest cutting and momentum efforts were presented when using the spectrum of the Ecuadorian construction standard. iii) when designing the structures, the results did not show a significant variation, a minimum difference was obtained regarding the longitudinal reinforcement steels. iv) in the city of Portoviejo, the structures built frequently do not exceed three levels and being designed with the spectrum of the standard would be underestimating the seismic acceleration of design. The use of microzonation spectra is recommended, which are the result of specific work for city conditions.   Keywords: Seismic microzonation, Design spectrum, Seismic Analysis, Seismic Design.


Author(s):  
Wenshen Pong ◽  
David Nesbet

Irregular building designs present special problems to the structural engineer due to their uneven distributions of mass, stiffness, and strength. Because of these factors, irregular structures may have significantly different dynamic performance than a regular structure, which can lead to unanticipated force concentrations, deflections, and subsequent stresses on building members. Irregular building designs, while often more visually and architecturally interesting, are significantly more challenging to engineer for seismic loads. Discontinuities and irregularities in mass, configuration, and form can create many unwanted and unexpected effects when a structure is subjected to seismic forces. The Uniform Building Code (UBC) 1997 edition has addressed this concern by requiring dynamic analysis of irregular building designs greater than five stories in areas with greater seismic activity (seismic zones 3 and 4). The UBC’s requirement of a dynamic lateral force analysis, along with the requirement of a higher base shear force for irregular building designs (regular buildings are given a 10% base shear reduction bonus when dynamic analysis is performed), has made irregular building designs unattractive to structural engineers. Some structural engineers may question whether the UBC provisions are unnecessarily punitive to irregular building analysis, particularly for smaller buildings. To test this hypothesis, this study compares the results of using much simpler static seismic loading analysis with the results obtained from a dynamic analysis on two steel-frame six-story irregular building designs. The first building is irregular due to a type 3 vertical geometric irregularity (specifically a 3-story tower asymmetrically located above the remaining 3 stories). The second building is irregular due to a plan structural irregularity (a large central courtyard which creates diaphragm discontinuities in the top three stories). Both buildings are considered to be located in seismic zone 4, with a forcing input based on the 1997 UBC figure 16-3 used for the dynamic analysis. This study aims to present the design implications of structural irregularity. It seeks to investigate the differences in the calculated seismic forces, deflections, and stresses due to the two different methods of analysis.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-10
Author(s):  
Sushil Adhikari ◽  
Tek Bahadur Katuwal ◽  
Dipak Thapa ◽  
Suraj Lamichhane ◽  
Dhurba Adhikari

 In L-shape building, lift core wall is an important element for strengthening the structure of high seismic zone area. Seismic zone V is considered for most of the buildings in Nepal, which will cause maximum base shear to the structure. This study focuses the use of lift core in five and ten-storey building to resist the seismic forces, and the effect of the lift core is also taken into consideration. Based on the location of the lift core, these building are further subdivided into different models; Lift at outer corner (model 1), lift at lower edge corner (model 2), lift at upper edge corner (model 3), lift at lower and upper edge corner (model 4), lift at inner corner (model 5), and lift at inner and outer corner (model 6). Equivalent static method and response spectrum analysis was used for the analysis. The structural responses were measured in terms of modal periods, displacement, drift ratio, and torsional irregularities. Results from this study indicate that building with lift core wall at inner and outer (model 6) and lift at lower and upper edge corner (model 4) shows the minimum drift ratio, torsional irregularities, displacement and natural time period which lies within permissible limit of torsional irregularities. Hence, it can be concluded that the location of the lift core affects the torsion of an L-shape plan asymmetric building. Designing two lift core at the inner and outer corner (model 6) and lower and upper edge corner (model 4) is found to be effective in reducing the torsion.


2019 ◽  
Vol 9 (1) ◽  
pp. 61
Author(s):  
SINGH RAVIKANT ◽  
KUMAR SINGH VINAY ◽  
YADAV MAHESH ◽  
◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Alinda Dey ◽  
Akshay Vijay Vastrad ◽  
Mattia Francesco Bado ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

The contribution of concrete to the tensile stiffness (tension stiffening) of a reinforced concrete (RC) member is a key governing factor for structural serviceability analyses. However, among the current tension stiffening models, few consider the effect brought forth by concrete shrinkage, and none studies take account of the effect for very long-term shrinkage. The present work intends to tackle this exact issue by testing multiple RC tensile elements (with different bar diameters and reinforcement ratios) after a five-year shrinking time period. The experimental deformative and tension stiffening responses were subjected to a mathematical process of shrinkage removal aimed at assessing its effect on the former. The results showed shrinkage distinctly lowered the cracking load of the RC members and caused an apparent tension stiffening reduction. Furthermore, both of these effects were exacerbated in the members with higher reinforcement ratios. The experimental and shrinkage-free behaviors of the RC elements were finally compared to the values predicted by the CEB-fib Model Code 2010 and the Euro Code 2. Interestingly, as a consequence of the long-term shrinkage, the codes expressed a smaller relative error when compared to the shrinkage-free curves versus the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document