scholarly journals Hybrid System Analysis using Solar and Wind Power

Combination of Photo voltaic and wind power is the one of the best solution for providing cleaning and nonpolluting energy from two of the most abundant renewable energy sources. A few areas have a wealth of light energy while others have a plenitude of wind. Having a mix Hybrid system enables you to exploit the predominant climate conditions to amplify vitality generation. The electrical vitality (DC control) created utilizing Solar panel can be put away in batteries or can be utilized for providing DC stacks or can be utilized for inverter to encourage AC loads. Solar Energy is accessible just amid the day time while wind vitality is accessible for the duration of the day relying on the climatic conditions. Wind and sun powered vitality are correlative to one another, which makes the framework to create power nearly consistentlys.

Author(s):  
Jiong Yan ◽  
Zi-xia Sang ◽  
Si-cong Wang ◽  
Zhi Du ◽  
Jia-qi Huang ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 25-36
Author(s):  
Branko Blazevic

In this paper, the author focuses on the fundamental hypothesis that the adoption of a concept of regional sustainable development and the use of renewable energy sources are preconditions to organising an acceptable regional tourism offering based on an eco-philosophy The renewable development of tourism regions is the basic framework for research regarding opportunities for introducing renewable energy sources such as hydro energy, wind power, solar energy, geothermal energy, and biomass energy. The purpose of this paper is to indicate the real opportunities that exist for substituting conventional energy sources with renewable ones and the role of renewables in regional development from economic, environmental and sociological viewpoints. It should also be noted that renewable energy sources have a strong regional importance and can contribute significantly to local employment.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3523 ◽  
Author(s):  
Haichao Wang ◽  
Giulia Di Pietro ◽  
Xiaozhou Wu ◽  
Risto Lahdelma ◽  
Vittorio Verda ◽  
...  

Renewable energy sources (RES) are playing an increasingly important role in energy markets around the world. It is necessary to evaluate the benefits from a higher level of RES integration with respect to a more active cross-border transmission system. In particular, this paper focuses on the sustainable energy transitions for Finland and Italy, since they have two extreme climate conditions in Europe and quite different profiles in terms of energy production and demand. We developed a comprehensive energy system model using EnergyPLAN with hourly resolution for a reference year for both countries. The models include electricity, heat and transportation sectors. According to the current base models, new scenarios reflecting an RES increase in total fuel consumption have been proposed. The future shares of renewables are based on each nation’s potential. The outcomes of the new scenarios support the future national plans, showing how decarburization in an energy system can occur in relation to the European Roadmap 2030 and 2050. In addition, possible power transmission between Italy and Finland were investigated according to the vision of an integrated European energy system with more efficient cross-border activities.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ardasher Namazbay Yussupov ◽  
Akmaral Ardasherovna Yussupova

PurposeThe purpose of this article discusses the design of underground eco-houses using a dome structure of light construction while taking into account the historical experience of the development of the local population. This article considered the traditions of folk architecture and modern sophistication in the creation of energy-efficient eco-houses in foreign countries in the context of architecture and construction of affordable residential homes for the local population.Design/methodology/approachThe research presented in this paper was motivated by the need for developing agro-tourism facilities in hard-to-reach areas of the Silk Road in Southern Kazakhstan causes the construction of eco-houses built using local construction materials. Since ancient times in Southern Kazakhstan and during seasonal migrations in yurts of light construction, people have lived in mud-brick houses deep in the ground. Along with architectural and artistic solutions in building construction, great importance was attached to saving material resources, labour costs and achieving heat stability of residential buildings.FindingsIn the architectural and planning solution of the eco¬-house, progressive directions of construction of agrotechnical structures using renewable energy sources are adopted. Particular importance was given to the choice of the construction site on an elevated area nearby historical monuments and a favourable season for the construction of eco-houses with considering the natural and climatic characteristics of rural areas of Southern Kazakhstan.Research limitations/implicationsThis paper discussed the issues of insulation, ventilation and improving the eco-house microclimate comfort using local building materials. Improving the architectural and artistic expressiveness of the eco-house in terms of the tradition of folk architecture was also explicitly discussed in this paper.Practical implicationsTables with the justification of expediency of construction of economical eco-houses in natural and climatic conditions of Kazakhstan and Central Asia are provided. The results help to improve the energy efficiency of eco-houses in Kazakhstan by using renewable energy sources.Social implicationsSocial benefits are associated with the use of local raw materials. Eco-houses built from traditional building materials can become accessible to a wide range of people and stimulate the development of small businesses. This may be associated with the construction of eco-houses to serve visiting tourists in remote picturesque oases, as well as the manufacture of dome structures, felt products and the preparation of reed panels and so on.Originality/valueThe thermotechnical characteristics of the region's ground energy are given, which can significantly save the cost of heating the eco-house. Solutions for optimal insolation, ventilation of the eco-house are provided, taking into account the natural and climatic conditions of Southern Kazakhstan.


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


2019 ◽  
pp. 36-41
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. Identify the features of operation of wind farms as an auxiliary supplier of electricity for non-traction consumers of railway networks and analyze the main factors that directly affect the use of wind farms due to the random nature of wind flow and additional factors due to the above conditions in different climates. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The need to use renewable energy sources in the power supply systems of non-traction consumers of railway transport is obvious. Given the constant growth of prices and tariffs for electricity in Ukraine, more and more attention is paid to its savings and the search for the cheapest and most affordable alternative sources. The authors consider issues related to the possibility of using additional generation of electricity in the power supply systems of railway transport through the use of wind turbines, including for non-traction consumers. The analysis of wind flow features in some regions of Ukraine was carried out, and the measurement of wind speed in Zaporizhia and Dnipropetrovsk regions was obtained with the help of a compact wind speed sensor manufactured by Micro-Step-MIS LLC (Russia). The obtained values of wind speed were recorded and stored digitally. The received information of the above device was processed. The authors conclude that in the case of using wind turbines as an additional power source in the networks of non-traction consumers of railway power supply systems it is economically advantageous to connect them directly to these networks and fully use all electricity produced by them, reducing its consumption from this power supply system. The originality is that the use of renewable energy sources in the power supply systems of non-traction consumers of railway transport, in particular wind turbines, is proposed. Practical implications. Introduction of wind power plants as an auxiliary supplier of electricity for non-traction consumers of railway power grids in order to minimize electricity costs. Keywords: renewable energy sources, quality of electric energy, wind power plant, power supply networks of railway transport, non-traction consumers of railway electric networks, electricity production, wind speed.


Sign in / Sign up

Export Citation Format

Share Document