scholarly journals Applications and Performance of Geogrids in Structures

2019 ◽  
Vol 8 (4) ◽  
pp. 5495-5500

A type of geosynthetic material named geogrid plays a pivotal role in the behaviour of concrete by implementing them as an additional reinforcement. Geogrids have good tensile strength as they are formed by the reticulation of tensile elements with an opening of an ample size which allows interlock with the nearby fill materials. These grids are flexible mesh which is highly effective and enhances the life of the structure. The prime constituents of geogrid are polyester, high-density polyethylene, and polypropylene. More often, in the field of civil engineering,uni-axial, bi-axial and tri-axial geogrids are used. As the cost and duration of construction are nominal, geogrids can be optedfor cost-effective and resilient construction. They are frequently used as reinforcement and for stabilization in structures like retaining walls, pavements, foundations, slopes, and embankments. The geogrids are employed in various construction which results in sustainable development. Thus, this paper discusses diverse studies that have been carried out by using different types of geogrids for various purposes by different research scholars

Author(s):  
Peter F. Baumann ◽  
Lucas Sendrowski

Large recycled high-density polyethylene (HDPE) structural members, difficult to manufacture by extrusion processes, have been created by the hot plate welding of simple plastic lumber sections. Hot plate welding generates better joint strength than any other welding method currently employed in plastic manufacturing. However, to achieve the desired temperature of the thick plate to melt the polymer uniformly, the process needs a high amount of heat energy requiring furnace (or resistance) heating of a considerable mass. A new method which could combine the heating element and a thin plate into one source could be more efficient in terms of heat loss and thus energy used. The premise of this investigation is to replace the hot plate with a very thin piece of high resistance nickel-chromium alloy ribbon to localize the application of heat within a plastic weld joint in order to reduce energy loss and its associated costs. This resistance ribbon method uses electrical current to reach an adequate temperature to allow for the welding of the HDPE plastic. The ribbon is only slightly larger than the welding surface and very thin to reduce the loss of excess heat through unused surface area and thick sides. The purpose of this project was to weld recycled high-density polyethylene (HDPE) using resistance welding and to match the tensile strength results considered acceptable in industry for hot plate welding, that is, equal to or greater than 80% of the base material strength. Information obtained through literature review and previous investigations in our laboratories established welding (heating) temperature and time as testing factors. Designed experimentation considered these factors in optimizing the process to maximize the weld tensile strength. A wide-ranging full-factorial experimental design using many levels was created for the initial testing plan. Tensile strengths obtained after welding under the various condition combinations of weld temperature and time revealed a region of higher strength values in the response surface. After the wide-range initial testing, the two control parameters, heating temperature and heating time, were ultimately set up in a focused Face Centered Cubic (FCC) Response Surface Method (RSM) testing design and the tensile strength response was then analyzed using statistical software. The results obtained indicated a strong correlation between heating time and heating temperature with strength. All welded samples in the final testing set exhibited tensile strength of over 90% base material, meeting the goal requirements. A full quadratic equation relationship for tensile strength as a function of welding time and temperature was developed and the maximum tensile strength was achieved when using 280°C for 60 seconds.


Author(s):  
Abdulmumin Adebisi ◽  
Tajudeen Mojisola ◽  
Umar Shehu ◽  
Muhammed Sani Adam ◽  
Yusuf Abdulaziz

In-situ synthesis of high-density polyethylene (HDPE) reinforced groundnut shell particulate (GSP) composite with treated GSP within the range of 10-30 wt% at 10 wt% has been achieved. The adopted technique used in the production of the composite is melt mixing and compounding using two roll mills with a compression moulding machine. Properties such as hardness, tensile strength, impact energy and water absorption analysis were examined. The result revealed that addition of GSP increases the hardness value from 22.3 to 87 Hv. However, the tensile strength progressively decreased as the GSP increases in the HDPE. This trend arises due to the interaction between neighbouring reinforced particulate which appears to influence the matrix flow, thereby inducing embrittlement of the polymer matrix. It was also observed that water absorption rate steadily increased with an increase in the exposure time and the absorbed amount of water increases by increasing the wt% of the GSP. Analysing the obtained results, it was concluded that there were improvements in the hardness, tensile strength, impact energy and water absorption properties of the HDPE-GSP polymer composite when compared to unreinforced HDPE. On these premises, GSP was found as a promising reinforcement which can positively influence the HDPE properties of modern composites.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000791-000810
Author(s):  
Jeb Flemming ◽  
Roger Cook ◽  
Kevin Dunn ◽  
James Gouker

Today's packaging has become the limiting element in system cost and performance for IC development. Assembly and packaging technologies have become primary differentiators for manufactures of consumer electronics and the main enabler of small IC product development. Traditional packaging approaches to address the needs in these “High Density Portable” devices, including FR4, liquid crystal polymers, and Low Temperature Co-Fire Ceramics, are running into fundamental limits in packaging layer thinness, high density interconnects (HDI) size and density, and do not present solutions to in-package thermal management, and optical waveguiding. In this talk, 3D Glass Solutions will present on our efforts to create advanced microelectronic packing solutions using our APEX™ Glass ceramic which offers a single material capable of being simultaneously used for ultra-HDI through glass vias (TGVs), optical waveguiding, and in-package microfluidic cooling. In this talk we will discuss our latest results in wafer-level microfabrication of packaging solutions. We will present on our efforts for creating copper filled vias, surface metallization, and passivation. Furthermore, we will present our efforts in exploring this material to produce (1) ultra-HDI glass interposers, with TGVs as small as 12 microns, with 14 micron center –to-center, (2) advanced RF packages with unique surface architectures designed to minimize signal loss, and (3) creating wave guiding structures in HDI packages.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ruktai Prurapark ◽  
Kittwat Owjaraen ◽  
Bordin Saengphrom ◽  
Inpitcha Limthongtip ◽  
Nopparat Tongam

This research aims to study the effect of temperature, collecting time, and condensers on properties of pyrolysis oil. The research was done be analyzing viscosity, density, proportion of pyrolysis products and performance of each condenser towers for the pyrolysis of high-density polyethylene (HDPE) and polyethylene terephthalate (PET) in the mobile pyrolysis plant. Results showed that the main product of HDPE resin was liquid, and the main product of PET resin was solid. Since the pyrolysis of PET results in mostly solid which blocked up the pipe, the analysis of pyrolysis oil would be from the use of HDPE as a raw material. The pyrolysis of HDPE resin in the amount of 100 kg at 400, 425, and 450°C produced the amount of oil 22.5, 27, and 40.5 L, respectively. The study found that 450°C was the temperature that gives the highest amount of pyrolysis oil in the experiment. The viscosity was in the range of 3.287–4.850 cSt. The density was in the range of 0.668–0.740 kg/L. The viscosity and density were increased according to three factors: high pyrolysis temperature, number of condensers and longer sampling time. From the distillation at temperatures below 65, 65–170, 170–250, and above 250°C, all refined products in each temperature range had the carbon number according to their boiling points. The distillation of pyrolysis oil in this experiment provided high amount of kerosene, followed by gasoline and diesel.


2019 ◽  
Vol 33 (11) ◽  
pp. 1466-1477
Author(s):  
Qingfa Zhang ◽  
Wenyu Lu ◽  
Liang Zhou ◽  
Donghong Zhang ◽  
Hongzhen Cai ◽  
...  

Biocomposites were prepared with corn straw slagging (CSS) and high-density polyethylene (HDPE) at four loading levels (10, 20, 30, and 40 wt%) by extrusion method. CSS/HDPE composites were tested by tension, oxygen index meter, differential scanning calorimetry, X-ray diffraction, and the scanning electron microscopy. The scanning electron microscopy showed that CSS was dispersed uniformly in the HDPE matrix and strong interfacial interaction was achieved, which had an important influence on the tensile strength of the composites. The tensile strength of the composites could be improved with proper increase of CSS and reached maximum value at 30 wt% content. Furthermore, the addition of CSS played an important role in improving the flame-retardant ability of CSS/HDPE composites, and the limited oxygen index was 31.26% at 40 wt% content, good flame-retardant effect achieved.


2020 ◽  
pp. 096739112093461
Author(s):  
WVWH Wickramaarachchi ◽  
S Walpalage ◽  
SM Egodage

Blending of two or more polymers generates a new material, which is more cost-effective than a newly synthesised material. Blending-type thermoplastic elastomer (TPE) is produced by melt-mixing of a thermoplastic with a rubber. These blends have high demands associated with excellent property combinations of the parent materials. Particulate fillers are used in the rubber and plastic industry for property modification and cost reduction. In this work, six particulate fillers, namely, calcium carbonate, barium sulphate (BaSO4), kaolin, talc, Snobrite clay and dolomite were used to develop natural rubber (NR)/high-density polyethylene (HDPE) TPE blends, and the most suitable filler for roofing application was identified. A series of NR/HDPE 20/80 blends were prepared by varying filler loading from 10 phr to 30 phr at 10 phr intervals using a Plasticorder. Mechanical properties, such as tensile strength, hardness, impact strength and tear strength, and gel content of the blends were investigated. The addition of talc, dolomite and kaolin to NR/HDPE blend showed reduced impact strength, which is the most important property for a roofing application. The other three fillers showed improved impact strength at specific loadings. The blend with 30 phr of BaSO4 was identified as the best blend, as per the overall performance.


2019 ◽  
Vol 69 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Luis Quiles‐Carrillo ◽  
Nestor Montanes ◽  
Vicent Fombuena ◽  
Rafael Balart ◽  
Sergio Torres‐Giner

Author(s):  
Jicheng Gao ◽  
Chao Li ◽  
Yifu Shen

The aim of this work is to fabricate the high-density polyethylene–copper composites by submerged friction stir processing at different traverse speeds. The scanning electron microscopy is used to analyze the distribution of microstructure and particles. The experimental results indicated that the macrostructure morphology, microstructure and tensile strength vary depending on the traverse speed. Compared with the pure high-density polyethylene, Cu-filled polymer composites showed lower tensile strength and higher microhardness. The maximal values of the tensile strength and microhardness were achieved at traverse speeds of 30 and 15 mm/min, respectively. The thermal properties of Cu-filled high-density polyethylene composites were studied by differential scanning calorimetry. The crystalline content of the composites was decreased due to the addition of copper. From the experimental tests, it can be concluded that submerged fiction stir processing has a great potential for producing polymer–metal composites.


Sign in / Sign up

Export Citation Format

Share Document