scholarly journals Optimization of Flexible Hose for Reducing Flow Maldistribution in Manifolds

2019 ◽  
Vol 8 (4) ◽  
pp. 12634-12640

Coolant Distribution Systems (CDS) are required to be optimally designed to ensure predefined mass flow rate in all parallel channels between exit and collecting manifolds, while maintaining low-pressure drop across them. Even small change in the pressure drop at component level will result in maldistribution of flow rate and increase in overall pressure drop of CDS. Numerical and experimental study had been carried out in the work proposed for change in pressure drop due to deformation of end connector’s bend cross section, in a flexible hose. The methodology for optimum modelling of the problem on CFD tool using sub-structuring method is also suggested. In sub-structuring method a part of complete hose (henceforth referred as sub-structured model), has been used instead of complete model of flexible hose. Results of sub-structuring model were compared with that of a complete model of a flexible hose. Numerical values obtained from simulation were validated with experimental results. Optimum bend cross section for avoiding maldistribution in parallel channels and increase in pressure drop of CDS were calculated. Substantial reduction in computation cost was achieved with negligible loss of accuracy in pressure drop values.

2018 ◽  
Vol 23 (2) ◽  
pp. 521-550
Author(s):  
A. Walicka ◽  
J. Falicki ◽  
P. Jurczak

Abstract In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of DeHaven type fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. variable cross-section, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. Each example is concluded with a presentation of the formulae for the velocity flow on the outer surface of a thin porous layer. Upon introduction of hindrance factors, these formulae may be presented in the most general forms.


2018 ◽  
Vol 137 ◽  
pp. 173-183 ◽  
Author(s):  
Yuguang Jiang ◽  
Yaxing Xu ◽  
Jiang Qin ◽  
Silong Zhang ◽  
Khaled Chetehouna ◽  
...  

1976 ◽  
Vol 98 (4) ◽  
pp. 702-706 ◽  
Author(s):  
John P. Zarling

An analytical method is presented for solving the governing equation for fully developed, steady, incompressible laminar flow through ducts of constant cross-section having a complex geometry. The technique uses the Schwarz-Neumann alternating method along with least squares point matching. The method is applied to a complex shaped duct and the resulting velocity series solution is used to calculate the flow rate and pressure drop (f•Re) for a range of duct sizes. Numerical results are presented and compared with experimentally determined friction factors for a duct of similar geometry.


2020 ◽  
pp. 123-126
Author(s):  
В.В. Кожемякин ◽  
Р.А. Иванов ◽  
Е.С. Игнатьева

Работа посвящена расчетно-теоретическому исследованию работы блока инжекторов. Рассмотрен пароводяной струйный аппарат, который применяется в качестве средства циркуляции теплоносителя первого контура. Подвод дополнительного потока осуществляется на цилиндрическом участке с внезапным расширением сечения через перемычку. Для достижения поставленной цели разработана программа для ЭМВ, в которой смоделирована зависимость давления от нагрузки в контуре, а также проведено расчетно-теоретическое исследование влияние гидравлического сопротивления на расход перемычки. В данной работе рассмотрены только рабочие режимы, т.е. все инжекторы работают как насосы. В ходе работы было установлено, что при нагрузке в 30% увеличиваются коэффициенты инжекции пароводяного струйного аппарата, но характер работы перемычек не меняется. Так же было установлено, что расход через перемычку меняется не пропорционально коэффициенту гидравлического сопротивления перемычки. The paper is devoted to the computational and theoretical study of the injector block operation. A steam-water jet apparatus is considered, which is used as a means of circulating the primary circle coolant. The additional flow is supplied on the cylindrical section with a sudden expansion of the cross-section through the bridge. To achieve this goal, a computer program was developed that modeled the pressure dependence on the load in the circuit, and also a theoretical study of the influence of hydraulic resistance on the flow of the jumper was conducted. In this paper, only operating modes are considered, i.e. all the injectors function as pumps. In the process of the research, it was found that at a load of 30%, the injection coefficients of the steam-water jet apparatus increase, but the nature of the work of the jumpers does not change. It was also found out that the flow rate through the jumper does not change in proportion to the coefficient of hydraulic resistance of the jumper.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


2018 ◽  
Vol 11 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola ◽  
Fulvio Palmieri ◽  
Roberto Pompei

Background:The paper deals with a diesel common rail nozzle in which a novel orifice layout is implemented.Objective:Its influence on the nozzle mechanical-hydraulic behavior and on the spray shape transient development is experimentally investigated.Methods:In the research, a solenoid injector for light duty diesel engines is equipped with the novel nozzle prototype and tested. The prototype layout is described, pointing out the features of the nozzle orifices, in which a Slot cross-section is adopted; the investigation is accomplished extending the hydraulic tests and the spray visualizations to a reference nozzle with standard holes. The influence of the hole layout on the mechanical-hydraulic behavior of the nozzle is assessed by experimental analysis based on the rate of injection measurement, in comparison with the reference nozzle. Once the hydraulic behavior of the novel nozzle has been characterized in terms of mass flow rate, the slot influence on the spray shape is assessed analyzing the macroscopic features such as the penetration distance and the spray angle, in non evaporative conditions. The study is carried out under transient injection conditions, for different injection pressures, up to 1400 bar.Results:The results on spray characteristics also provide reference information to set up spray models suited to take the Slot orifice into account.


1994 ◽  
Vol 59 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Václav Dolejš ◽  
Ivan Machač ◽  
Petr Doleček

The paper presents a modification of the equations of Rabinowitsch-Mooney type for an approximate calculation of pressure drop in laminar flow of generalized Newtonian liquid through a straight channel whose cross section forms a simple continuous area. The suitability of the suggested procedure of calculation of pressure drop is demonstrated by the comparison of calculation results with both the published and original results of numerical solution and experiments.


Author(s):  
Nihad Dukhan ◽  
Angel Alvarez

Wind-tunnel pressure drop measurements for airflow through two samples of forty-pore-per-inch commercially available open-cell aluminum foam were undertaken. Each sample’s cross-sectional area perpendicular to the flow direction measured 10.16 cm by 24.13 cm. The thickness in the flow direction was 10.16 cm for one sample and 5.08 cm for the other. The flow rate ranged from 0.016 to 0.101 m3/s for the thick sample and from 0.025 to 0.134 m3/s for the other. The data were all in the fully turbulent regime. The pressure drop for both samples increased with increasing flow rate and followed a quadratic behavior. The permeability and the inertia coefficient showed some scatter with average values of 4.6 × 10−8 m2 and 2.9 × 10−8 m2, and 0.086 and 0.066 for the thick and the thin samples, respectively. The friction factor decayed with the Reynolds number and was weakly dependent on the Reynolds number for Reynolds number greater than 35.


Sign in / Sign up

Export Citation Format

Share Document