scholarly journals Rainfall-Streamflow Relationship using Stepwise Method as a Basis for Rationalization of Rain Gauge Network Density

2020 ◽  
Vol 8 (5) ◽  
pp. 3814-3821

The design of rain gauge network density must be adjusted to meet the information needs of specific water uses, particularly in regard to availability of good quality and quantity of rainfall data. The study has an aim to conduct a rationalization to obtain an optimal number of rain gauge network density based on the WMO standard and the stepwise regression method. The rationalization of rain gauge network density using the stepwise method was carried out by examining the multiple correlation (r) and determination coefficient (R2 ) between rainfall and streamflow data and subsequently, to find out the rain gauges that contribute the most to the multiple regression model as a basis to determine the optimal number of rain gauge. The results found that the study area experienced a high density of rain gauge network refer to the WMO standard. The rationalization using the stepwise method showed that five rain gauges recommended as the optimal number of rain gauge. The percentage root mean square (rms) of basin rainfall showed values of 3.58% (less than 10%) which indicated that the recommended rain gauges have no significant problem regarding rainfall variation to determine basin rainfall. The study confirmed that the WMO standard and stepwise method approaches could be used as a sufficient tool to evaluate and rationalize a rain gauge network density in a river basin.

RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Stefany Correia de Paula ◽  
Rutineia Tassi ◽  
Daniel Gustavo Allasia Piccilli ◽  
Francisco Lorenzini Neto

ABSTRACT In this study was evaluated the influence of the rainfall monitoring network density and distribution on the result of rainfall-runoff daily simulations of a lumped model (IPH II) considering basins with different drainage scales: Turvo River (1,540 km2), Ijuí River (9,462 km2), Jacuí River (38,700 km2) and Upper Uruguay (61,900 km2). For this purpose, four rain gauge coverage scenarios were developed: (I) 100%; (II) 75%; (III) 50% and (IV) 25% of the rain gauges of the basin. Additionally, a scenario considering the absence of monitoring was evaluated, in which the rainfall used in the modeling was estimated based on the TRMM satellite. Was verified that, in some situations, the modeling produced better results for scenarios with a lower rain gauges density if the available gauges presented better spatial distribution. Comparatively to the simulations performed with the rainfall estimated by the TRMM, the results obtained using rain gauges’ data were better, even in scenarios with low rain gauges density. However, when the poor spatial distribution of the rain gauges was associated with low density, the satellite’s estimation provided better results. Thus, was conclude that spatial distribution of the rain gauge network is important in the rainfall representation and that estimates obtained by the TRMM can be presented as alternatives for basins with a deficient monitoring network.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1906
Author(s):  
Yeboah Gyasi-Agyei

Rain gauges continue to be sources of rainfall data despite progress made in precipitation measurements using radar and satellite technology. There has been some work done on assessing the optimum rain gauge network density required for hydrological modelling, but without consensus. This paper contributes to the identification of the optimum rain gauge network density, using scaling laws and bias-corrected 1 km × 1 km grid radar rainfall records, covering an area of 28,371 km2 that hosts 315 rain gauges in south-east Queensland, Australia. Varying numbers of radar pixels (rain gauges) were repeatedly sampled using a unique stratified sampling technique. For each set of rainfall sampled data, a two-dimensional correlogram was developed from the normal scores obtained through quantile-quantile transformation for ordinary kriging which is a stochastic interpolation. Leave-one-out cross validation was carried out, and the simulated quantiles were evaluated using the performance statistics of root-mean-square-error and mean-absolute-bias, as well as their rates of change. A break in the scaling of the plots of these performance statistics against the number of rain gauges was used to infer the optimum rain gauge network density. The optimum rain gauge network density varied from 14 km2/gauge to 38 km2/gauge, with an average of 25 km2/gauge.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Basile Pauthier ◽  
Benjamin Bois ◽  
Thierry Castel ◽  
D. Thévenin ◽  
Carmela Chateau Smith ◽  
...  

A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE) by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1) PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2) both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3) PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE). This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.


2012 ◽  
Vol 13 (6) ◽  
pp. 1784-1798 ◽  
Author(s):  
Emad Habib ◽  
Alemseged Tamiru Haile ◽  
Yudong Tian ◽  
Robert J. Joyce

Abstract This study focuses on the evaluation of the NOAA–NCEP Climate Prediction Center (CPC) morphing technique (CMORPH) satellite-based rainfall product at fine space–time resolutions (1 h and 8 km). The evaluation was conducted during a 28-month period from 2004 to 2006 using a high-quality experimental rain gauge network in southern Louisiana, United States. The dense arrangement of rain gauges allowed for multiple gauges to be located within a single CMORPH pixel and provided a relatively reliable approximation of pixel-average surface rainfall. The results suggest that the CMORPH product has high detection skills: the probability of successful detection is ~80% for surface rain rates >2 mm h−1 and probability of false detection <3%. However, significant and alarming missed-rain and false-rain volumes of 21% and 22%, respectively, were reported. The CMORPH product has a negligible bias when assessed for the entire study period. On an event scale it has significant biases that exceed 100%. The fine-resolution CMORPH estimates have high levels of random errors; however, these errors get reduced rapidly when the estimates are aggregated in time or space. To provide insight into future improvements, the study examines the effect of temporal availability of passive microwave rainfall estimates on the product accuracy. The study also investigates the implications of using a radar-based rainfall product as an evaluation surface reference dataset instead of gauge observations. The findings reported in this study guide future enhancements of rainfall products and increase their informed usage in a variety of research and operational applications.


2005 ◽  
Vol 2 ◽  
pp. 103-109 ◽  
Author(s):  
M. C. Llasat ◽  
T. Rigo ◽  
M. Ceperuelo ◽  
A. Barrera

Abstract. The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain). Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.


Author(s):  
Igor Paz ◽  
Bernard Willinger ◽  
Auguste Gires ◽  
Laurent Monier ◽  
Christophe Zobrist ◽  
...  

This paper presents a comparison between rain gauges, C-band and X-band radar data over an instrumented and regulated catchment of the Paris region, as well as their respective hydrological impacts with the help of flow observations and a semi-distributed hydrological model. Both radars confirm the high spatial variability of the rainfall down to their space resolution (respectively one kilometer and 250 m) and therefore underscore limitations of semi-distributed simulations. The use of the polarimetric capacity of the Météo-France C-band radar was limited to corrections of the horizontal reflectivity and its rainfall estimates are adjusted with the help of a rain gauge network. On the contrary, neither calibration was performed for the polarimetric X-band radar of the Ecole des Ponts ParisTech (below called ENPC X-band radar), nor any optimization of its scans. In spite of that and the non-negligible fact that the catchment was much closer to the C-band radar than to the X-band radar (20 km vs. 40 km), the latter seems to perform at least as well as the former, but with a higher scale resolution. This characteristic was best highlighted with the help of a multifractal analysis of the respective radar data, which also shows that the X-band radar was able to pick up a few extremes that were smoothed out by the C-band radar.


2011 ◽  
Vol 8 (1) ◽  
pp. 1665-1704 ◽  
Author(s):  
E. Abushandi ◽  
B. Merkel

Abstract. The GSMaP_MVK+ (Global Satellite Mapping of Precipitation) dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment in Northeast Jordan for the period of January 2003 to March 2008. The scarcity of the ground rain gauge network alone did not adequately show the detailed structure of the rainfall distribution, independent form interpolation techniques used. This study combines GSMaP_MVK+ and ground rain gauges to produce accurate, high-resolution datasets. Three meteorological stations and six rain gauges were used to adjust and compare GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauges records showed distinct regions where they correlate, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR) model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The "best" fit of MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reasonable than estimates obtained using daily data. The adjusted GSMaP_MVK+ performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales while daily estimation showed some weakness in light and moderate storms.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 157-170
Author(s):  
Mohd Khairul Bazli Mohd Aziz ◽  
Fadhilah Yusof ◽  
Zalina Mohd Daud ◽  
Zulkifli Yusop ◽  
Mohammad Afif Kasno

The well-known geostatistics method (variance-reduction method) is commonly used to determine the optimal rain gauge network. The main problem in geostatistics method to determine the best semivariogram model in order to be used in estimating the variance. An optimal choice of the semivariogram model is an important point for a good data evaluation process. Three different semivariogram models which are Spherical, Gaussian and Exponential are used and their performances are compared in this study. Cross validation technique is applied to compute the errors of the semivariograms. Rain-fall data for the period of 1975 – 2008 from the existing 84 rain gauge stations covering the state of Johor are used in this study. The result shows that the exponential model is the best semivariogram model and chosen to determine the optimal number and location of rain gauge station.


2020 ◽  
Vol 10 (16) ◽  
pp. 5620
Author(s):  
Taeyong Kwon ◽  
Junghyun Lim ◽  
Seongsim Yoon ◽  
Sanghoo Yoon

To reduce hydrological disasters, it is necessary to operate rain gauge stations at locations where the spatio-temporal characteristics of rainfall can be reflected. Entropy has been widely used to evaluate the designs and uncertainties associated with rain gauge networks. In this study, the optimal rain gauge network in the Daegu and Gyeongbuk area, which requires the efficient use of water resources due to low annual precipitation and severe drought damage, was determined using conditional and joint entropy, and the selected network was quantitatively evaluated using the root mean square error (RMSE). To consider spatial distribution, prediction errors were generated using kriging. Four estimators used in entropy calculations were compared, and weighted entropy was calculated by weighting the precipitation. The optimal number of rain gauge stations was determined by calculating the RMSE reduction and the reduction ratio according to the number of selected rain gauge stations. Our findings show that the results of conditional entropy were better than those of joint entropy. The optimal rain gauge stations showed a tendency wherein peripheral rain gauge stations were selected first, with central stations being added afterward.


Sign in / Sign up

Export Citation Format

Share Document