scholarly journals Design of Sliding Mode Controlled Bi-directional DC-DC Current Source Resonant Converter for an Inductive Contactless Battery Charging Application

2020 ◽  
Vol 8 (6) ◽  
pp. 1050-1053

The practical use of current source DC-DC resonant converters has an outstanding performance in terms of its robust and fast performance. In this paper, the non-linear behavior during the battery charging application is solved using an adaptive Sliding Mode Control (SMC) technique. The SMC has a robust feature in fast transient responses over large load disturbances. The proposed converter uses Contactless Energy Transfer (CET) system that provides a suitable reactive power compensation for the design. The winding parameters of the inductance are mathematically modeled with low coupling factor to remove the voltage and current harmonics. The designed converter is subjected to input side perturbation for a non-linear disturbance and the output obtained using the Sliding Mode Controller is analysed. The non-linearity at the output voltage is reduced when using the SMC. The controller design show the setting time of the DC voltage under such disturbance is reduced to 97%. The proposed system is mathematically modeled and simulated using MATLAB/Simulink. The prototype model is designed and the results are analyzed.

Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2011 ◽  
Vol 128-129 ◽  
pp. 50-53
Author(s):  
Qing He ◽  
Jin Kun Liu

In this paper, an adaptive sliding mode control (ASMC) method for a single inverted pendulum (IP) is proposed. The physical parameters are transformed into the model information, thus adaptive law for the IP can be designed with unknown physical parameters. By simulation and experiments, we found that the ASMC method can keep the IP in the upright position, with quick parameters adjustment and high degree of system robustness.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sandeep Gupta ◽  
Ramesh Kumar Tripathi

A current source converter (CSC) based static synchronous compensator (STATCOM) is a shunt flexible AC transmission system (FACTS) device, which has a vital role as a stability support for small and large transient instability in an interconnected power network. This paper investigates the impact of a novel and robust pole-shifting controller for CSC-STATCOM to improve the transient stability of the multimachine power system. The proposed algorithm utilizes CSC based STATCOM to supply reactive power to the test system to maintain the transient stability in the event of severe contingency. Firstly, modeling and pole-shifting controller design for CSC based STATCOM are stated. After that, we show the impact of the proposed method in the multimachine power system with different disturbances. Here, applicability of the proposed scheme is demonstrated through simulation in MATLAB and the simulation results show an improvement in the transient stability of multimachine power system with CSC-STATCOM. Also clearly shown, the robustness and effectiveness of CSC-STATCOM are better rather than other shunt FACTS devices (SVC and VSC-STATCOM) by comparing the results in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lihua Liang ◽  
Mingxiao Sun ◽  
Tiantian Luan

An adaptive sliding mode controller based on fuzzy input design is presented, in order to reduce the roll motion of surface vessel fin stabilizers with shock and vibration of waves. The nonlinearities and uncertainties of the system including feedback errors and disturbance induced by waves are analyzed. And the lift-feedback system is proposed, which improves the shortage of conventional fin angle-feedback. Then the fuzzy input-based adaptive sliding mode control is designed for the system. In the controller design, the Lyapunov function is adopted to guarantee the system stability. Finally, experimental results demonstrate the superior performance of the controller designed using fuzzy input, when compared to the PID controller used in practical engineering.


2021 ◽  
Author(s):  
Jingya Dai

The rapid growth of wind energy market has propelled the research and development of high-power wind turbines in the megawatt range. At this power level, current source converter (CSC) topologies possess favorable features such as simple structure, grid friendly waveforms, controllable power factor, and reliable grid short-circuit protection. This dissertation proposes the use of current source converters for permanent magnet synchronous generator based megawatt wind energy conversion systems (WECS). Related research in terms of converter topology, modulation scheme, control strategy and grid integration are carried out to adapt the proposed configuration for megawatt wind applications. Various current source converter topologies are compared for wind applications. Detailed feasibility study and performance evaluation are conducted based on theoretical analysis and simulation results. Among all, the back-to-back pulse-width modulated (PWM) current source converter is identified as the most promising converter configuration for megawatt WECS due to its high performance, control flexibility and compliance with grid connection codes. A novel multi-sampling space vector modulation (MS-SVM) scheme with superior harmonic performance and controllability is proposed to operate the PWM CSC. The device switching frequency under MS-SVM is investigated and methods to eliminate additional switching are presented. The proposed scheme is compared with the conventional modulation schemes. It is demonstrated that the MS-SVM scheme provides superior performance at low switching frequency. It not only offers high control flexibility but also substantially reduces the low-order harmonics existing in the conventional schemes. System modeling and controller design for the current source converter based WECS are then presented. Dynamic, steady-state and small-signal models are developed for analysis and controller design. An optimum de-link current control scheme is developed to achieve the best dynamic performance and maximize the system overall efficiency. Control strategies such as decoupled active and reactive power control and power feed-forward control are also proposed to further improve the system dynamic performance. Grid integration issues, especially the low-voltage ride-through capability of the current source converter based WECS, are addressed. Challenges for the grid-connected current source converter are identified based on grid code requirements. A unified de-link current control scheme is proposed to assist the system to ride through grid low-voltage faults while maintaining the control capability of active and reactive power during and after the fault. The unified de-link controller can be well embedded in the system control structure. Smooth transitions between normal and fault operations are achieved. Simulation and experimental verifications for various objectives are provided throughout the dissertation. The results validate the proposed solutions for the main challenges of using current source converter in a megawatt WECS.


Sign in / Sign up

Export Citation Format

Share Document