DEVELOPMENT OF MEASURES TO IMPROVE ROAD CONDITIONS ON ROAD SECTIONS BASED ON THE ANALYSIS OF TRAFFIC CONDITIONS

2021 ◽  
Vol 2021 (24) ◽  
pp. 159-168
Author(s):  
Anatolii Palchyk ◽  

Introduction. The analysis of road capacity is carried out. Problem statement. One of the reasons for the appointment of the road reconstruction or part of it is the deterioration of traffic safety, resulting in an increase in the number of victims and material losses during traffic accidents. Road capacity is an important indicator during highway reconstruction. The analysis of the road section capacity makes it possible to assess the work of the road during its entire life cycle from the moment of its commissioning to the moment of reconstruction. Existing methods for determining the practical traffic lane capacity, the maximum traffic volume on the highway section give ambiguous results that need to be improved. Purpose. The purpose of the work is to study the average speed, which is one of the factors that determine the maximum traffic volume on the road. Materials and methods. Analysis of the results of experimental studies of average speeds of free movement of different type of vehicles on roads of different categories. Results. The general form of equations of dependence of average traffic speed on radii of horizontal curves and speed on a longitudinal slope is established; the impact of road conditions on the traffic speed according to the study of graphs of average speeds before and after the improvement of traffic conditions on road sections was analyzed. Conclusions. Based on the assessment of traffic conditions with the provision of maximum traffic volume on road sections between intersections and junctions, which determine the traffic volume between them, it is possible to address the need for partial or complete reconstruction of the highway. Keywords: road capacity, traffic volume, highway, intersection, junctions, traffic speed, highway reconstruction.

2019 ◽  
Vol 262 ◽  
pp. 05004
Author(s):  
Janusz Chodur ◽  
Krzysztof Ostrowski

In the widely used HCM and HBS assessment methods of the traffic performance of two-lane highways speed models are an essential element of the analytical methodology. Differences in the approach to analyses, as well as differing numbers of determinants taken into account and criteria used to assess traffic performance may all produce disparate results and reduce the practicality of the application of these methods. The paper compares the HCM and HBS speed models and demonstrates key differences in their approach to the impact of traffic volume, the share of heavy vehicles and longitudinal gradients of the road. The assessment of traffic performance by both methods also demonstrates significant differences in assessments, especially in more adverse road and traffic conditions. The paper will also show assumptions underlying the choice of research sites, methods of traffic research, databases and selected results of analyses as well as the impact of selected factors on speed and speed regression models.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sartika Nisumanti ◽  
Evina Krisna

<p><em>The roads</em><em> </em><em>transportation is an </em><em>important infrastructure as one of the land transportation infrastructures for the movement of social activities and to support economic development, specifically in Palembang City. </em><em>The population growth of Palembang City has resulted in an increase in the number of vehicles and highway users. As a result</em><em>, transportation activities in Palembang, especially at Parameswara </em><em>roads are increasing. </em><em>The impact of this, there will be heavy traffic volume, resulting in conflicts on the road, which lead to traffic accidents. </em><em>Therefore</em><em>, there will be congestion and a decrease in the performance of the road speed.</em></p><p><em>The research is conducted at Parameswara Road in Palembang that visually diminished the ability to accommodate the road traffic volume per day, accordingly the effect of traffic that occurs due to the lack of road capacity as the sequence of large volume traffic. The purpose of this study is to determine the capacity and level of road services to carried out the performance value on this road. The method used in the analysis is the Greenshield model, Greenberg, and Underwood. This study explains the maximum volume at peak hour that develop on Monday is between 1561 smp/hour and 1549 smp/hour. Whereas the lowest is around 1225 smp/hour and 1008 smp/hour that occurs on Sunday. Therefore, the analysis of service level on the research years at Parameswara Road depicts the saturated traffic conditions and low starting speed with D service index category and service level analysis at 10 years of planning time projections, the lpda result is from 2022 to 2026, The Parameswara road conditions at E and F service index categories are the traffic jam circumstances and slight speed. Hence, it necessitates constructing a non-plot way at Parameswara Road intersection to tackle this traffic congestion.</em></p><p><strong><em>Keywords</em></strong><em>:<strong> </strong></em><em>Greenshield, Greenberg, Underwood</em>, <em>Road Capacity</em><em>.</em></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ji Eun Park ◽  
Wanhee Byun ◽  
Youngchan Kim ◽  
Hyeonjun Ahn ◽  
Doh Kyoum Shin

Automated vehicles (AVs) are believed to have great potential to improve the traffic capacity and efficiency of the current transport systems. Despite positive findings of the impact of AVs on traffic flow and potential road capacity increase for highways, few studies have been performed regarding the impact of AVs on urban roads. Moreover, studies considering traffic volume increase with a mixture of AVs and human-driven vehicles (HDVs) have rarely been conducted. Therefore, this study investigated the impact of gradual increments of AV penetration and traffic volume on urban roads. The study adopted a microsimulation approach using VISSIM with a Wiedmann 74 model for car-following behavior. Parameters for AVs were set at the SAE level 4 of automation. A real road network was chosen for the simulation having 13 intersections in a total distance of 4.5 km. The road network had various numbers of lanes from a single lane to five lanes in one direction. The network consists of a main arterial road and a parallel road serving nearby commercial and residential blocks. In total, 36 scenarios were investigated by a combination of AV penetrations and an increase in traffic volumes. The study found that, as AV penetration increased, traffic flow also improved, with a reduction of the average delay time of up to 31%. Also, as expected, links with three or four lanes had a more significant impact on the delay. In terms of road capacity increase, when the penetration of AVs was saturated at 100%, the road network could accommodate 40% more traffic.


2020 ◽  
pp. 37-46
Author(s):  
Maiyozzi Chairi ◽  
Jihan Melasari ◽  
Rian Afandi

Congestion is a situation or state of stalling or even stopping traffic caused by a large number of vehicles exceeding road capacity. Traffic congestion is a big problem that is often faced in Indonesia, especially in big cities. This study aims to analyze the factors that cause congestion in Jalan Gajah Mada Gunung Pangilun, Padang City. This research is quantitative descriptive by calculating traffic volume and the causes of traffic jams. And following the Urban Road Capacity Guidelines (PKJP, 2014). Based on the results of the field survey in Road Capacity (C) 3340 pcu / hour, Total Traffic Volume (Q) 1446 pcu / hour and Saturation Degree (DJ) 0.43 pcu / hour, so that the Road Service Level (LOS) type can be obtained B in the sense that traffic flow is stable, the speed starts to be influenced by traffic conditions, but can still be chosen according to the will of the driver. The highest level of congestion occurs on Wednesday, December 11, 2019 (from the day surveyed).


2021 ◽  
Vol 13 (12) ◽  
pp. 2329
Author(s):  
Elżbieta Macioszek ◽  
Agata Kurek

Continuous, automatic measurements of road traffic volume allow the obtaining of information on daily, weekly or seasonal fluctuations in road traffic volume. They are the basis for calculating the annual average daily traffic volume, obtaining information about the relevant traffic volume, or calculating indicators for converting traffic volume from short-term measurements to average daily traffic volume. The covid-19 pandemic has contributed to extensive social and economic anomalies worldwide. In addition to the health consequences, the impact on travel behavior on the transport network was also sudden, extensive, and unpredictable. Changes in the transport behavior resulted in different values of traffic volume on the road and street network than before. The article presents road traffic volume analysis in the city before and during the restrictions related to covid-19. Selected traffic characteristics were compared for 2019 and 2020. This analysis made it possible to characterize the daily, weekly and annual variability of traffic volume in 2019 and 2020. Moreover, the article attempts to estimate daily traffic patterns at particular stages of the pandemic. These types of patterns were also constructed for the weeks in 2019 corresponding to these stages of the pandemic. Daily traffic volume distributions in 2020 were compared with the corresponding ones in 2019. The obtained results may be useful in terms of planning operational and strategic activities in the field of traffic management in the city and management in subsequent stages of a pandemic or subsequent pandemics.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
V. L. Knoop ◽  
M. Keyvan-Ekbatani ◽  
M. de Baat ◽  
H. Taale ◽  
S. P. Hoogendoorn

Freeways form an important part of the road network. Yet, driving behavior on freeways, in particular lane changes and the relation with the choice of speed, is not well understood. To overcome this, an online survey has been carried out. Drivers were shown video clips, and after each clip they had to indicate what they would do after the moment the video stopped. A total of 1258 Dutch respondents completed the survey. The results show that most people have a strategy to choose a speed first and stick to that, which is the first strategy. A second, less often chosen, strategy is to choose a desired lane and adapt the speed based on the chosen lane. A third strategy, slightly less frequently chosen, is that drivers have a desired speed, but contrary to the first strategy, they increase this speed when they are in a different lane overtaking another driver. A small fraction have neither a desired speed nor a desired lane. Of the respondents 80% use the right lane if possible, and 80% avoid overtaking at the right. Also 80% give way to merging traffic. The survey was validated by 25 survey respondents also driving an instrumented vehicle. The strategies in this drive were similar to those in the survey. The findings of this work can be implemented in traffic simulation models, e.g., to determine road capacity and constraints in geometric design.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Eko Prayitno ◽  
Veronika Veronika

The highway is one of the infrastructure for the smooth traffic. One part of the road that are considered necessary to be analyzed and evaluated is an intersection. Three Gadut intersection is non signalized intersection. The traffic flow is quite dense, and lack of discipline of road user factors competing space to pass the crossing, resulting in congestion is very influential on traffic conditions at peak hours in the morning, afternoon and evening. Prior to conducting the survey, the first to do is survey the condition of the intersection that includes geometric characteristics and traffic volume. From the analysis of environmental data, side friction factor to the junction of three Gadut is the criteria being. Rated capacity (C) the smallest is 3706.3 smp/hour, the degree of saturation of 1.1 smp/hour. This value is over the limit permitted values manually indonesian road capacity of 0.8 to 0.9 (1.1> 0.9), it is concluded that the traffic flow is the crossroads of three Gadut saturated traffic flow. The queue probability value between 128.8% - 157.4% with a total delay largest average 11.57 seconds/smp. It is concluded that the chances of a queue at the intersection of three Gadut very large, so it could cause congestion.


2019 ◽  
Vol 2 (1) ◽  
pp. 75
Author(s):  
Philipus Resato Nahak ◽  
Yosef Cahyo ◽  
Sigit Winarto

The increase in traffic volume will cause a decrease in service due to decreased road capacity due to an increase in side constraints and due to the increase in traffic volume itself, which will ultimately cause the level of road saturation to increase. The situation occurred in the Umasukaer road section of the Malacca Regency. Therefore it is necessary to address improvements in the quality of the road in order to meet the feasibility of transportation facilities by taking into account the existing technical requirements. The results of planning found that through the 2015 LHR survey data with a prediction of an increase in traffic density of 6% per year, the LHR was obtained with a planned age of 7 years = 2540.7 vehicles/day/department and a 20-year plan life LHR = 5419.1 ked/day / major. The results of a gradual construction planning pavement study can be concluded that the planning model that has been designed is effective in strengthening road construction in accordance with existing technical requirements and efficient in terms of financing. The final results of gradual construction pavement thickness results are: Ashburton thickness (MS 744) = 8 cm, Ashburton (MS 744) = 13 cm, broken stone (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm and CBR subgrade 5%. Pertambahan volume lalu lintas akan menyebabkan penurunan layanan diakibatkan menurunnya kapasitas jalan karena adanya peningkatan hambatan samping maupun karena beratambahnya volume lalu lintas itu sendiri yang pada akhirnya akan meyebabkan tingkat kejenuhan jalan meningkat. Keadaan tersebut terjadi ruas jalan Umasukaer Kabupaten Malaka, oleh karena itu perlu adanya penanganan perbaikan kualitas jalan agar memenuhi segi kelayakan sarana transportasi dengan memperhatikan syarat-syarat teknik yang ada. Hasil perencanaan didapatkan bahwa melalui data survey LHR tahun 2015 dengan prediksi peningkatan kepadatan lalu lintas sebesar 6% pertahun maka didapatkan LHR dengan umur rencana 7 tahun = 2540,7 kend/hr/jurusan dan LHR umur rencana 20 tahun = 5419,1 ked/hr/jurusan. Hasil studi perencanaan perkerasan konstruksi bertahap dapat diambil kesimpulan bahwa model perencaaan yang telah dirancang efektif dalam memperkerasa konstruksi jalan sesuai dengan syarat teknis yang ada serta efisien dalam hal pembiayaan. Hasil akhir tebal perkerasan konstruksi bertahap diperoleh hasil: Ketebalan Asbuton (MS 744) = 8 cm, Asbuton (MS 744) = 13 cm, batu pecah (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm dan CBR tanah dasar 5%.


2019 ◽  
Vol 17 ◽  
Author(s):  
Zakiah Ponrahono ◽  
Noorain Mohd Isa ◽  
Ahmad Zaharin Aris ◽  
Rosta Harun

The inbound and outbound traffic flow characteristic of a campus is an important physical component of overall university setting. The traffic circulation generated may create indirect effects on the environment such as, disturbance to lecturetime when traffic congestion occurs during peak-hours, loss of natural environment and greenery, degradation of the visual environment by improper or illegal parking, air pollution from motorized vehicles either moving or in idle mode due to traffic congestion, noise pollution, energy consumption, land use arrangement and health effects on the community of Universiti Putra Malaysia (UPM) Serdang. A traffic volume and Level of Service (LOS) study is required to facilitate better accessibility and improves the road capacity within the campus area. The purpose of this paper is to highlight the traffic volume and Level of Service of the main access the UPM Serdang campus. A traffic survey was conducted over three (3) weekdays during an active semester to understand the traffic flow pattern. The findings on traffic flow during peak hours are highlighted. The conclusions of on-campus traffic flow patterns are also drawn.


2020 ◽  
Vol 12 (8) ◽  
pp. 3432
Author(s):  
Zhen Yang ◽  
Xiaocan Chen ◽  
Dazhi Sun

Recently, with the discrepancy between increasing traffic demand and limited land resources, more and more expressways are choosing to use hard shoulders to expand into quasi-six-lane or quasi-eight-lane roads. Therefore, more emergency parking bays are used in place of traditional parking belts. However, there are no standards defining clear and unified specifications for the design of parking bays. This paper aimed to investigate the impact of emergency parking bays on expressway traffic operations with various traffic volumes and setting conditions. Based on the Monte Carlo method, VISSIM (Verkehr in Städten Simulation, a microscopic simulation software) simulation experiments were conducted using measured traffic operation data from one expressway in Zhejiang province. The probability of unsafe deceleration, lane-changing maneuvers and delay times were considered as the safety and efficiency indexes in this simulation study. The simulation results indicated that the emergency parking vehicle had an increasing impact on the following vehicle as the traffic volume increased. However, the impact pattern was found to be insensitive to the changing of the bay taper length. For low traffic volume, compared with the arrival vehicle, the departure vehicle had more impact on the traffic operation of the mainline. However, the impact of the arrival vehicle became more remarkable as the traffic volume increased. After parking, the waiting time for merging into the mainline was reduced as the volume decreased or as the bay taper increased. Furthermore, reductions caused by varying bay tapers were more significant under high volume conditions. Finally, this study suggests that parking bays are inapplicable when the occupancy of the road space exceeds 20% (about 3000 veh/h), because they would cause significant impact on the safety and efficiency of the expressway. The results of this paper are useful for the design and implementation of emergency parking bays.


Sign in / Sign up

Export Citation Format

Share Document