scholarly journals ENSILING CHARACTERISTICS AND NUTRITIVE VALUE OF CORN COBS AS AFFECTED BY ADDITION OF DIFFERENT LEVELS OF UREA AND SOLUBLE CARBOHYDRATES

2017 ◽  
Vol 48 (Special) ◽  
Author(s):  
Saeed & Mohammed

This study was carried out in vitro to investigate the effect of addition of different levels of dates honey (DH) as soluble carbohydrates (WSC) and urea on fermentation quality and nutritive value of corn cobs silages (CCS). CC was ensiled with 4 levels of DH, 4, 6, 8 or 10% and 3 levels of urea 0, 1.5 or 3%. CCS samples were packed in double layer nylon bags and kept anaerobically for 60 days. Results revealed that color of CCS samples were ranged between yellow and brown. Smell of diluted vinegar was detected in samples made with addition of DH only, whereas, those made with addition of low and high levels of urea were characterized with smell of diluted and concentrated ammonia respectively. Increasing DH level from 4 to 10% significantly (P˂0.05) decrease in neutral detergent fiber (NDF) and hemicellulose by 2.42 and 2.69% respectively, with significant (P˂0.01) increase in crude protein (CP) and ether extract (EE). Significant (P˂0.05) decrease in crude fiber (CF) and NDF with significant (P˂0.01) increase in CP and cellulose contents were noticed due to addition of urea. Results also showed a trend for pH to be reduced (P˂0.01) with increasing level of DH, but different responses to increased urea levels were shown, where values were 5.91, 6.17 and 6.95 at levels of 0, 1.5 and 3%. Increasing DH level (6 and 8%) significantly (P˂0.01) decrease silage ammonia nitrogen concentration as a percentage of total nitrogen (18.52 and 18.35) and increase concentration of total volatile fatty acids as a percentage of silage dry matter (DM) at higher levels (6.73 and 8.24%), however both concentrations were reversely responded to increase urea level. Lower DM loss and buffering capacity (BC) were recorded at the lower level of DH (41.86 and 43.60 meq NaOH/100 g DM), whereas the higher level was associated with better Fleig point (Fp). Regarding effect of levels of urea, lower (P˂0.01) DM loss and BC with higher (P˂0.01) Fp at the lower level were observed, the later was 63.16. Results of study also revealed that increasing level of DH decreased aerobic stability of CCS samples to 41 hours (h), but higher value of 43.5 was recorded at higher level of urea. Results also showed that in vitro DM digestibility of CCS was (P˂0.05) improved due to increasing levels of DH and urea, however, lower (P˂0.05) values were obtained with lower levels of these additives.

2021 ◽  
Vol 52 (4) ◽  
pp. 977-988
Author(s):  
Saeed & et al.

Factorial experiment was carried out to investigate the effect of two factors, molasses (M) and liquid whey (LW) on fermentation characteristics and nutritive value of date palm leaves (DPL). Fresh DPL was chopped into 1-2 cm and treated with treatment solutions prepared by addition of 5, 7.5 or 10% of M together with 3 levels of LW on basis of nitrogen content equivalent to 0, 1 or 1.5% of urea. Ground wheat straw was added to each sample at rate of 50 g. Materials were packed into double nylon sacs and ensiled for 60 days. Samples of DPL were appeared firmly connected and most of them acquired yellowish to light green color with emission of an apple-date vinegar smell. Results revealed that there was a significant (P˂0.01) decrease in dry matter and crude fiber contents with increasing M levels. In DPL silages prepared with 10% of M, these contents were 30.04 and 34.70% respectively. Crude protein content was significantly increased (P˂0.01) from 6.39 to 7.32 and 7.32% for 0, 1 and 1.5% levels of LW respectively. This was associated with a significant (P˂0.05) decrease in fat content. All samples of DPL silages were characterized with good quality as evidenced by fermentation characteristics. There was a significant (P˂0.01) decrease in pH accompanied with an increase (P˂0.01) in ammonia nitrogen concentration. Values ranged between 3.85 to 3.78 and 3.84 to 4.32% of total nitrogen for the 1st and 2nd parameters due to the addition of low and high levels of M respectively. Addition of LW at 1 and 1.5% levels decreased (P˂0.05) pH from 3.85 to 3.81 and 3.81, but concentrations of total volatile fatty acids were increased (P˂0.01) from 2.29 to 2.97 and 3.11% of DM. Results showed that increasing level of M to 7.5 and 10% increased (P˂0.01) DM loss from 12 to 17.78%, but it improved (P˂0.01) aerobic stability. Samples of DPL silages prepared with addition of 1.5% of LW resisted for longer (P˂0.01) period (55.58 hours) before signs of aerobic deterioration were appeared.


2002 ◽  
Vol 29 (1) ◽  
pp. 91 ◽  
Author(s):  
Andrew P. Woolnough ◽  
William J. Foley

Near-infrared spectroscopy (NIRS) was used to predict the nutritive value of forage species available to the critically endangered northern hairy-nosed wombat (Lasiorhinus krefftii). Nutritive attributes of the forage successfully estimated included total nitrogen concentration, fibre (including neutral detergent fibre, acid detergent fibre and acid lignin), organic matter, water soluble carbohydrates and in vitro dry matter digestibility. The reported results demonstrate the seasonal variability of the forage resource available to L. krefftii in its tropical savanna habitat. Multivariate modelling of the spectra enabled the nutritive value of forage samples to be estimated with coefficients of determination (r2) of 0.770–0.995 and standard errors of the cross-validation of 0.070–2.850 using a modified partial least-squares analysis technique. The standard error of the laboratory was 0.02–1.42. This study demonstrates that broad-based NIRS predictive equations can be used to predict the nutritive value of a number of plant types available to a herbivore over time. By using NIRS the analyst can rapidly analyse large numbers of samples with limited reduction of precision, thereby enabling large-scale ecological applications that may have previously been impeded by time and costs.


2018 ◽  
Vol 53 (9) ◽  
pp. 1045-1052
Author(s):  
Mateus Merlo Coelho ◽  
Lúcio Carlos Gonçalves ◽  
José Avelino Santos Rodrigues ◽  
Kelly Moura Keller ◽  
Gustavo Vinícius de Souza dos Anjos ◽  
...  

Abstract: The objective of this work was to evaluate the effects of re-ensiling and bacterial inoculation on the quality of corn silage. The experiment was carried out in a 2x2 factorial design with or without inoculant (association of Lactobacillus plantarum and Propionibacterium acidipropionici), and with re-ensiling after 36 hours of aerobic exposure or only ensiling of the whole plant of 'BRS 1055' corn. The fermentative quality, nutritional parameters, dry matter losses, aerobic stability, and microbiological counts of silages were evaluated. Re-ensiling caused an increase of pH and in acetic acid and propionic acid concentrations, as well as in the dry matter (DM), crude protein, neutral detergent fiber, and neutral detergent fiber crude protein contents. Conversely, there was a reduction in the nonfiber carbohydrates concentration and in in vitro dry matter digestibility for the re-ensiled material. All changes were explained by the higher-effluent production and DM loss of re-ensiled material that was subjected to two compactions. Microbiology was not altered by the treatments. The use of inoculant altered ash content, but it did not influence other parameters. In contrast, re-ensiling after 36 hours of aerobic exposure caused a reduction in the nutritive value of corn silage and accentuated the DM losses.


1995 ◽  
Vol 75 (3) ◽  
pp. 425-432 ◽  
Author(s):  
T. A. McAllister ◽  
L. B. Selinger ◽  
L. R. McMahon ◽  
H. D. Bae ◽  
T. J. Lysyk ◽  
...  

The effect of ensiling barley treated with two bacterial inoculants containing mixtures of Lactobacillus plantarum and Enterococcus faecium (1.0 × 105 cfu g−1 as fed silage) on the nutritional value and aerobic stability of barley silage was examined. Inoculants differed in the strains they contained and were originally selected by Pioneer Hi-Bred International for use with corn or alfalfa silage, SILA-BAC® (1174), or with grass silage (X2637). Concentrations of water-soluble carbohydrates were higher (P < 0.05) in inoculated than in control silages. Although inoculants appeared to increase the numbers of lactic acid producing bacteria (LAB) at ensiling, post-ensiling numbers (cfu g−1) of yeasts and molds were lower (P < 0.05) in inoculated than in control silages. Lactic acid concentrations and pH were similar among the silages and variations m the growth of yeast and mold populations could not be explained by differences in the production of volatile fatty acids (VFA) among silages. Inoculation of barley silage with either inoculant increased (P < 0.01) the average daily gain of lambs. A digestibility experiment with 12 growing ram lambs showed that inoculants did not alter (P > 0.05) DM intake, feed efficiency or the digestion of DM, organic matter, acid detergent fiber (ADF) and neutral detergent fiber (NDF). Nitrogen intake and retention were greater (P < 0.05) in lambs fed silage inoculated with 1174 as compared with control silage. Yeast populations were increased (P < 0.05) in control and 1174 after 2 d of exposure to air but it required 13 d for a similar yeast population to be established in X2637 silage. Increases in the mold populations within the silages were noted after 2, 5 and 13 d of exposure to air for control, 1174 and X2637, respectively. The temperature of control silage increased (P < 0.05) 2 d after exposure to air, whereas increases in temperature were delayed for 4 d in 1174 and 8 d in X2637. Temperatures rose as high as 30 °C in control silage, but did not exceed 24 °C in inoculated silages during the 13 d period. Key words: Barley silage, inoculant, digestion, aerobic stability, sheep, gain


2021 ◽  
Vol 64 (2) ◽  
pp. 401-411
Author(s):  
Noura Saïed ◽  
Mohamed Khelifi ◽  
Annick Bertrand ◽  
Gaëtan F. Tremblay ◽  
Mohammed Aider

HighlightsJuice extraction resulted in a decrease in the nutritive value of the bagasse as compared with the initial biomass.Silages made from the second pressing bagasse were well conserved.Sweet sorghum silage has a better nutritive value than sweet pearl millet.Abstract. Pressing the biomass of sweet sorghum and sweet pearl millet in-field is one of the suggested options for bioethanol production. The extracted juice can be delivered to an ethanol plant, and the bagasse (pressing residue) can be used for ruminant feeding. Efficient carbohydrate extraction is highly important for good ethanol yield. However, enough carbohydrates must remain in the bagasse for its adequate conservation as silage. In this study, the ensilability and the chemical composition of the second pressing bagasse of sweet sorghum and sweet pearl millet were investigated. The bagasse was obtained following a second pressing of the first pressing bagasse after its impregnation with water based on three water:bagasse ratios (0.5, 1, and 1.5). Results indicated that water:bagasse ratio did not affect water-soluble carbohydrate (WSC) extraction for both crops. The second pressing bagasse of sweet sorghum and sweet pearl millet contained 80.5 ±4.6 and 60 ±4.6 g of WSC kg-1 dry matter (DM), respectively. The second pressing bagasse of both crops had reduced nutritive value compared to the initial biomass, i.e., higher neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations along with lower non-structural carbohydrate (NSC) concentration, in vitro true digestibility of DM (IVTD), and in vitro NDF digestibility (NDFd). The second pressing bagasses of both crops also showed good ensilability, but sweet sorghum bagasse silages were of better nutritive value than sweet pearl millet bagasse silages (ADF = 446.2 ±3.7 vs. 463.2 ±3.7 g kg-1 DM, IVTD = 813.8 ±3.4 vs. 708.8 ±6.8 g kg-1 DM, and NDFd = 741.8 ±4.8 vs. 596.2 ±8.5 g kg-1 NDF, respectively). The water:bagasse ratio used for bagasse impregnation before the second pressing only affected the NDF concentration of silages, as a higher NDF concentration was obtained with a water:bagasse ratio of 1.5. Sweet sorghum and sweet pearl millet can be considered dual-purpose crops; the extracted juice can be fermented into ethanol, and the second pressing bagasse can be used to make good-quality silage. Keywords: Bagasse impregnation, Nutritive value, Silage, Sweet pearl millet, Sweet sorghum, Water-soluble carbohydrates.


2017 ◽  
Vol 18 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Aline Cardoso OLIVEIRA ◽  
Rasmo GARCIA ◽  
Aureliano José Vieira PIRES ◽  
Hellenn Cardoso OLIVEIRA ◽  
Vitor Visintin Silva de ALMEIDA ◽  
...  

SUMMARY The experiment was developed to evaluate the effects of wilting and inclusion of cassava meal level on nutritive value, fermentative characteristics and losses of elephant grass silage. The 4 x 2 factorial scheme was adopted, with four repetitions, in a completely randomized design. The factors evaluated were wilting (without and with) and cassava meal level (0; 7.5; 15 and 22.5% of natural matter, DN). PVC silos with 50 cm height and 10 cm diameter were used for silages production, which were opened after 60 days. The wilting and cassava meal addition had increasing linear effect on DM content. Silages with cassava meal showed reduction of total nitrogen, ether extract, acid detergent insoluble nitrogen, neutral detergent fiber ash and protein free, acid detergent fiber, celluloses, hemicelluloses and lignin contents and increase of organic matter content, DM in vitro digestibility and total digestible nutrients. Relative to variables inherent to silages’ fermentative characteristics, pH presented quadratic behavior. Concerning to ammonia nitrogen, it was observed quadratic and decreasing linear behavior for silages without and with wilting, respectively. Wilting and cassava meal inclusion provided smaller effluent losses.


2020 ◽  
Vol 44 ◽  
Author(s):  
Caroline Salezzi Bonfá ◽  
Cíntia Gonçalves Guimarães ◽  
Antônio Ricardo Evangelista ◽  
Alexandre Soares dos Santos ◽  
Amanda Gonçalves Guimarães ◽  
...  

ABSTRACT We evaluated the contents of dry matter (DM), crude protein (CP), mineral matter (MM), soluble carbohydrates (CHOS), ammonia nitrogen (N-NH3), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in sugarcane silages to which different levels of inclusion (LI) of crambe bran (CB) were added in proportions of 0, 3, 10, 17 and 20% at different storage times (ST). Laboratory silos were used, predetermined ST being 0, 3, 7, 12, 24, 36, 41, and 60 days after silage. For statistical analysis, the response surface methodology was used, in which LI and ST served as independent factors and response variables as dependent factors. The levels of DM and CP increased linearly with NI; however, it did not show any significant response regarding ST. The CHOS contents were reduced linearly with NI and displayed a quadratic response with ST. The interaction between NI and ST for the levels of N-NH3 was significant, as the levels reduced with the NI and ST. The levels of NDF and ADF reduced linearly with NI and displayed a quadratic response with ST. The CB showed high efficacy to improve fermentation of ensiled cane, with the addition and conservation of nutrients in all NI evaluated and over the storage time. In addition to the residues generated with the production of biodiesel in a sustainable way, CB is a viable alternative to the sugarcane silage.


2020 ◽  
Vol 8 (2) ◽  
pp. 141-146
Author(s):  
Marcelo A. Benvenutti ◽  
Craig Findsen ◽  
Jean V. Savian ◽  
David G. Mayer ◽  
David G. Barber

A plot study was conducted at the Gatton Research Dairy, Queensland, Australia, to quantify the effects of 5 regrowth periods (9, 11, 14, 16 and 18 days) and 4 vertical strata on the composition and nutritive value of kikuyu (Cenchrus clandestinus) pastures using a block factorial design with 4 replicates. Pasture samples were analyzed for crude protein (CP), ethanol-soluble carbohydrates (ESC), acid detergent fiber (ADF), neutral detergent fiber (aNDFom), in vitro indigestible neutral detergent fibre (iNDF240) and minerals. Metabolizable energy (ME) was then calculated from the concentrations of other nutrients. Regardless of the stage of regrowth, stems were located mainly in the bottom 1 or 2 strata, while leaves were present mainly in the top 2 or 3 strata. CP, ESC and ME declined, but aNDFom, ADF and iNDF240 increased with stage of regrowth and from top to bottom of the swards (P<0.05). While herbage quality variables were affected by both factors, vertical stratum had a much larger impact on quality than stage of regrowth. These results indicate that grazing management of kikuyu pastures should be based not only on stage of regrowth but also on level of defoliation, as both have strong impacts on the nutritive value of the consumed forage.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1362
Author(s):  
Joseph G. Robins ◽  
B. Shaun Bushman ◽  
Kevin B. Jensen

Selection from novel orchardgrass (Dactylis glomerata L.) germplasm sources resulted in the development of a late-maturing orchardgrass population. This population comprises 58 families that were evaluated with 5 commercial cultivars under frequent and infrequent harvest intervals at two Cache County, UT, USA field locations during 2013 and 2014. The objective of this study was to characterize the performance of individual families when compared to check cultivars Intensive and Latar. Across locations and harvest intervals, individual families produced greater herbage dry mass and nutritive value than the check cultivars did, i.e., up to 12% greater herbage dry mass than that of the highest check, Intensive, and 1% (neutral-detergent-fiber digestibility) to 14% (water soluble carbohydrates) greater forage quality than that of the corresponding highest check cultivar. However, there were substantial genotype-by-environment interactions between families and locations, but not harvest intervals. Because of this, results were analyzed across harvest intervals but within locations. Within each location, there were families that possessed similar or greater maturity, herbage dry mass, in vitro true digestibility, and neutral-detergent-fiber digestibility at both locations. Overall, on the basis of the performance of its component families, this late-maturing orchardgrass population exhibited potential for developing improved cultivars.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


Sign in / Sign up

Export Citation Format

Share Document