scholarly journals SIMULTANEOUS ADSORPTION OF TETRACYCLINE AND AMOXICILLIN BY CLADOPHORA AND SPIRULINA ALGAE BIOMASS

2021 ◽  
Vol 52 (5) ◽  
pp. 1290-1303
Author(s):  
I. N. Abd ◽  
M. J. Mohammed-Ridha

Adsorption studies were performed at different initial Tetracycline (TC) and Amoxicillin (AMO) concentration, different biomass dosage and type, contact time, agitation speed, and initial pH.  In the batch mode were investigated. The optimum pH of solutions is 6.5 for TC and 5 for AMO, agitation speed 200 rpm and concentration 50 ppm. The results in FTIR showed that there were -OH and amides (N-H) and other functional groups on the surface of Cladophora and Spirulina algae. The equilibrium isotherm data were modeled with Freundlich, Temkin, and Langmuir isotherm models. The data best fitted with the Langmuir model. The maximal adsorption capacity from the Langmuir model was (9.86, 20. 5 mg/g) for TC and (7.89, 17.4 mg/g) for AMO on Cladophora and Spirulina algae, respectively. Finally, the pseudo-second-order kinetic model was best fitted the experimental kinetic data of TC and AMO onto Cladophora and Spirulina algae biomass with a high coefficient of determination between 0.97 and 0.99.    Cladophora and Spirulina algae, low-cost and eco-friendly adsorbents, can be used to adsorb the TC and AMO from the solution.

2021 ◽  
Vol 52 (2) ◽  
pp. 336-347
Author(s):  
I. N. Abd ◽  
M. J. Mohammed-Ridha

Cladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presence of functional groups of different components such as the Hydroxyl group (-OH), amides(N-H stretch) were responsible of surface adsorption processes. The isothermal study has been applied using Freundlich, Temkin, and Langmuir models. The data best fitted with the Langmuir model. Finally, The pseudo-second-order kinetic model was best fitted the kinetic data with a high coefficient of determination (R2< 0.97 and 0.99) when used Cladophora and Spirulina algae biomass, respectively. The study showed that both Cladophora and Spirulina algae were promising and economical biomass that could be used for a large scale bioreactor.


2017 ◽  
Vol 76 (12) ◽  
pp. 3307-3318 ◽  
Author(s):  
Tingting Qin ◽  
Zhaowei Wang ◽  
Xiaoyun Xie ◽  
Chaoran Xie ◽  
Junmin Zhu ◽  
...  

Abstract The biochar was prepared by pyrolyzing the roots of cauliflowers, at a temperature of 500 °C under oxygen-limited conditions. The structure and characteristics of the biochar were examined using scanning electron microscopy, an energy dispersive spectrometer, a zeta potential analyzer, and Fourier transform infrared spectroscopy. The effects of the temperature, the initial pH, antibiotic concentration, and contact time on the adsorption of norfloxacin (NOR) and chlortetracycline (CTC) onto the biochar were investigated. The adsorption kinetics of NOR and CTC onto the biochar followed the pseudo-second-order kinetic and intra-particle diffusion models. The adsorption isotherm experimental data were well fitted to the Langmuir and Freundlich isotherm models. The maximum adsorption capacities of NOR and CTC were 31.15 and 81.30 mg/g, respectively. There was little difference between the effects of initial solution pH (4.0–10.0) on the adsorption of NOR or CTC onto the biochar because of the buffering effect. The biochar could remove NOR and CTC efficiently in aqueous solutions because of its large specific surface area, abundant surface functional groups, and particular porous structure. Therefore, it could be used as an excellent adsorbent material because of its low cost and high efficiency and the extensive availability of the raw materials.


2021 ◽  
pp. 174751982198996
Author(s):  
Moussa Abbas

Among the different photocatalysts, TiO2 ( Eg = 3.1 eV, zero charge point (pHpzc = 6.3), and surface = 55 m2/g) is currently the most efficient and the most studied semiconductor due to its strong photocatalytic activity, non-toxicity, and chemical stability. The elimination of DR-80 on TiO2 is studied by adsorption in batch mode and by application of heterogeneous photocatalysis onto TiO2 under UV irradiation. The effects of contact time (0–60 min), initial pH (3–11), dose of the adsorbent (0.5–3 g L−1), and DR-80 concentration (40–60 mg L−1) on the adsorption of DR-80 by TiO2 are studied for optimization of these parameters. The kinetic parameters, rate constants, and equilibrium adsorption capacities are calculated and discussed for each applied theoretical model. The adsorption of DR-80 is well described by the pseudo-first-order kinetic model. The fitting of the adsorption isotherms shows that the models of Langmuir and Temkin offering a better fit and an adsorption 64.102 mg/g at 25 °C of DR-80 are eliminated. The results showed that the photocatalytic efficiency strongly depends on the pH while the initial rate of photodegradation is proportional to the catalyst dose, and becomes almost constant above a threshold value. It was found that the photodegradation is favored at low DR-80 concentrations in accordance with the Langmuir–Hinshelwood model with the constants Kad = 6.5274 L/mg and KL–H = 0.17818 mg L−1 min. However, the adsorption is improved for high DR-80 concentrations. It is found that the degradation depends on both the temperature and the pH with a high elimination rate at high temperature. The photocatalyst TiO2 has a better activity for the degradation of DR-80, compared to some commercial catalysts that have been described in the literature.


2013 ◽  
Vol 67 (11) ◽  
pp. 2560-2567 ◽  
Author(s):  
Fan Yang ◽  
Xiaojie Song ◽  
Lifeng Yan

Cationic paper was prepared by reaction of paper with 2,3-epoxypropyltrimethylammonium chloride in aqueous suspension, and tested as low-cost adsorbent for wastewater treatment. The experimental results revealed that anionic dyes (Acid Orange 7, Acid Red 18, and Acid Blue 92) were adsorbed on the cationic paper nicely. The maximum amount of dye Acid Orange 7 adsorbed on cationic paper was 337.2 mg/g in experimental conditions. The effects of initial dye concentration, temperature, and initial pH of dye solution on adsorption capacity of cationic paper were studied. The pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data. The Freundlich and Langmuir adsorption models were used to describe adsorption equilibrium. The thermodynamic data indicated that the adsorption process of dye on cationic paper occurred spontaneously.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2016 ◽  
Vol 11 (7) ◽  
pp. 3777-3788 ◽  
Author(s):  
H. Dashti Khavidaki ◽  
M. H. Fekri

In this study, the adsorption of thallium (I) ion as a dangerous pollutant from aqueous solution onto modified ZnO nanopowder as a fairly cheap adsorbent has been examined in batch mode. It was known that modification of the adsorbent was necessary to reach a significant adsorption percentage. The adsorbent used here was modified by sodium phosphate solution. The effect of experimental conditions such as initial pH of solution, contact time, adsorbent dosage, initial concentration of thallium and temperature is studied. The results showed the dependence of the adsorption percentage to these conditions specially its pH. The maximum adsorption percentage of Tl (I) ions at 25±1oC was 92.8%. Freundlich isotherm model provided a better fit with the experimental data than Langmuir and Temkin isotherm models by high correlation. Separation factor, RL, values showed that modified ZnO nanopowder was favorable for the adsorption of Tl (I) ion. The negative value of ΔH0 showed that Tl (I) sorption is an exothermic process and the negative value of ΔS0 represented that there is a little decrease of randomness at the solid-solution interface during sorption.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


Sign in / Sign up

Export Citation Format

Share Document