scholarly journals A novel biochar derived from cauliflower (Brassica oleracea L.) roots could remove norfloxacin and chlortetracycline efficiently

2017 ◽  
Vol 76 (12) ◽  
pp. 3307-3318 ◽  
Author(s):  
Tingting Qin ◽  
Zhaowei Wang ◽  
Xiaoyun Xie ◽  
Chaoran Xie ◽  
Junmin Zhu ◽  
...  

Abstract The biochar was prepared by pyrolyzing the roots of cauliflowers, at a temperature of 500 °C under oxygen-limited conditions. The structure and characteristics of the biochar were examined using scanning electron microscopy, an energy dispersive spectrometer, a zeta potential analyzer, and Fourier transform infrared spectroscopy. The effects of the temperature, the initial pH, antibiotic concentration, and contact time on the adsorption of norfloxacin (NOR) and chlortetracycline (CTC) onto the biochar were investigated. The adsorption kinetics of NOR and CTC onto the biochar followed the pseudo-second-order kinetic and intra-particle diffusion models. The adsorption isotherm experimental data were well fitted to the Langmuir and Freundlich isotherm models. The maximum adsorption capacities of NOR and CTC were 31.15 and 81.30 mg/g, respectively. There was little difference between the effects of initial solution pH (4.0–10.0) on the adsorption of NOR or CTC onto the biochar because of the buffering effect. The biochar could remove NOR and CTC efficiently in aqueous solutions because of its large specific surface area, abundant surface functional groups, and particular porous structure. Therefore, it could be used as an excellent adsorbent material because of its low cost and high efficiency and the extensive availability of the raw materials.

2015 ◽  
Vol 17 (3) ◽  
pp. 95-99 ◽  
Author(s):  
Parvin Gharbani ◽  
Ali Mehrizad ◽  
Ismail Jafarpour

Abstract Removal of penicillin has been investigated using decaffeinated tea waste (DCTW). Decaffeination of tea waste was investigated using different methods. Results indicate that ozonation was the most effective process for removal of penicillin. Batch adsorption experiments were completed at various temperatures (20, 30, and 40°C), DCTW dosages (2, 4, 6, 8, and 10 g per 250 mL), penicillin concentrations (4, 10, and 14 mg/L), and pH (3, 7, and 10) conditions. Studies showed that adsorption reaches equilibrium within 40 min. The main factor affecting adsorption of penicillin was the solution pH, with maximum adsorption occurring at pH 3. Higher adsorbent dosages and lower penicillin concentrations also resulted in higher percentages of penicillin removal. Results show that data obeyed the pseudo-first-order kinetic and Freundlich isotherm models. This process proves that low-cost DCTW could be used as a high performance adsorbent for removing penicillin from aqueous solutions.


2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2010 ◽  
Vol 62 (8) ◽  
pp. 1888-1897 ◽  
Author(s):  
Nan Chen ◽  
Zhenya Zhang ◽  
Chuanping Feng ◽  
Miao Li ◽  
Rongzhi Chen ◽  
...  

Kanuma mud, a geomaterial, is used as an adsorbent for the removal of fluoride from water. The influences of contact time, solution pH, adsorbent dosage, initial fluoride concentration and co-existing ions were investigated by batch equilibration studies. The rate of adsorption was rapid with equilibrium being attained after about 2 h, and the maximum removal of fluoride was obtained at pH 5.0–8.0. The Freundlich isotherm model was found to represent the measured adsorption data well. The negative value of the thermodynamic parameter ΔG suggests the adsorption of fluoride by Kanuma mud was spontaneous, the endothermic nature of adsorption was confirmed by the positive ΔH value. The negative ΔS value for adsorbent denoted decreased randomness at the solid/liquid interface. The adsorption process using Kanuma mud followed the pseudo-second-order kinetic model. Fluoride uptake by the Kanuma mud was a complex process and intra-particle diffusion played a major role in the adsorption process. It was found that adsorbed fluoride could be easily desorbed by washing the adsorbent with a solution of pH 12. This indicates the material could be easily recycled.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2021 ◽  
Vol 52 (5) ◽  
pp. 1290-1303
Author(s):  
I. N. Abd ◽  
M. J. Mohammed-Ridha

Adsorption studies were performed at different initial Tetracycline (TC) and Amoxicillin (AMO) concentration, different biomass dosage and type, contact time, agitation speed, and initial pH.  In the batch mode were investigated. The optimum pH of solutions is 6.5 for TC and 5 for AMO, agitation speed 200 rpm and concentration 50 ppm. The results in FTIR showed that there were -OH and amides (N-H) and other functional groups on the surface of Cladophora and Spirulina algae. The equilibrium isotherm data were modeled with Freundlich, Temkin, and Langmuir isotherm models. The data best fitted with the Langmuir model. The maximal adsorption capacity from the Langmuir model was (9.86, 20. 5 mg/g) for TC and (7.89, 17.4 mg/g) for AMO on Cladophora and Spirulina algae, respectively. Finally, the pseudo-second-order kinetic model was best fitted the experimental kinetic data of TC and AMO onto Cladophora and Spirulina algae biomass with a high coefficient of determination between 0.97 and 0.99.    Cladophora and Spirulina algae, low-cost and eco-friendly adsorbents, can be used to adsorb the TC and AMO from the solution.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3602
Author(s):  
Ling Li ◽  
Yan Li ◽  
Yiqi Liu ◽  
Lei Ding ◽  
Xiaopeng Jin ◽  
...  

Particularly, because of the leakage risk of metal elements from sludge carbon, little attention has been focused on using sludge activated carbon as an adsorbent for the removal of Cr (VI) from contaminated water sources. Herein, a novel sludge carbon derived from dewatered cassava sludge was synthesized by pyrolysis using ZnCl2 as an activator at the optimal conditions. The prepared sludge activated carbon possessed a large BET surface (509.03 m2/g), demonstrating an efficient removal for Cr (VI). Although the time to reach equilibrium was extended by increasing the initial Cr (VI) concentration, the adsorption process was completed within 3 h. The kinetics of adsorption agreed with the Elovich model. The whole adsorption rate was controlled by both film and intra-particle diffusion. The Cr (VI) removal efficiency increased with elevating temperature, and the adsorption equilibrium process followed the Freundlich isotherm model. The adsorption occurred spontaneously with endothermic nature. The removal mechanism of Cr (VI) on the prepared sludge activated carbon depended highly on solution pH, involving pore filling, electrostatic attraction, reduction, and ion exchange. The trace leakage of metal elements after use was confirmed. Therefore, the prepared sludge activated carbon was considered to be a highly potential adsorbent for Cr (VI) removal from contaminated raw water.


2020 ◽  
Vol 12 (3) ◽  
pp. 1174 ◽  
Author(s):  
Lulit Habte ◽  
Natnael Shiferaw ◽  
Mohd Danish Khan ◽  
Thenepalli Thriveni ◽  
Ji Whan Ahn

In the present work, waste eggshells were used as a precursor for the synthesis of aragonite crystals through the wet carbonation method. Cadmium (Cd2+) and lead (Pb2+) were removed by the synthesized aragonite from synthetic wastewater. The influence of initial solution pH, contact time, Cd2+ and Pb2+ concentration, and sorbent dosage were evaluated. The major sorption was observed in the first 100 mins and 360 mins for Pb2+and Cd2+ respectively reaching sorption equilibrium at 720 mins (12 hr). The sorption capacity toward Pb2+ was much higher than toward Cd2+. Both heavy metals displayed high sorption capacities at initial pH 6. The pseudo-second-order kinetic model fits well with the experimental data with a higher correlation coefficient R2. Two isotherm models were also evaluated for the best fit with the experimental data obtained. Langmuir isotherm best fits the sorption of the metals on aragonite synthesized from eggshells. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) results of sorbent after sorption showed that the mechanism of sorption was dominated by surface precipitation. Therefore, aragonite crystals synthesized from waste eggshells can be a potential substitute source for the removal of Cd2+ and Pb2+ from contaminated water.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunusi A. Zubair ◽  
◽  
Umar Ibrahim Gaya ◽  

Granular activated carbons have been important adsorbents for the decontamination of aqueous environmental contaminants. Acanthospermum hispidum weed represents a ready available source of low-cost adsorbents in sub-Saharan Africa that has barely been paid attention. The effects of pH, contact time, concentration, adsorbent dosage, particle size and temperature on the adsorptive removal of Pb (II) from aqueous solutions over activated carbon granules from the thorns of Accanthospermum hispindum (AC-T) were for the first time investigated and compared with those of the leaves (L), the sodium hydroxide modified thorns (NaOH-T) and regular thorns (T) of this plant. These adsorbents were characterised by the surface charge analysis, scanning electron microscopy (SEM) and the Attenuated Total Reflectance Fourier Transform infrared (ATR FTIR) spectroscopy. The SEM revealed a wafer-like appearance for the AC-T with a large distribution of open pores. The adsorption data of lead uptake onto the adsorbents were examined using two pseudo-order kinetic schemes and three isotherm models. To fully understand the adsorption capacities of the adsorbents, batch desorption recoveries were studied. The FTIR depicted the various functionalities responsible for the adsorption. Adsorption over AC-T was found to agree with pseudo second-order kinetic scheme, the Langmuir and Freundlich isotherm. This material exhibited the highest adsorption capacity. The order of reusability of the adsorbents is T < AC-T < NaOH-T.


2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


Sign in / Sign up

Export Citation Format

Share Document