scholarly journals Hybrid Beamforming Analysis Based on MIMO Channel Measurements at 28 GHz

Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>

2020 ◽  
Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Han Wang ◽  
Wencai Du ◽  
Xianpeng Wang ◽  
Guicai Yu ◽  
Lingwei Xu

A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Fan ◽  
Pekka Kyösti ◽  
Jesper Ø. Nielsen ◽  
Lassi Hentilä ◽  
Gert F. Pedersen

This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on modeling bidirectional spatial channel models in multiprobe anechoic chamber (MPAC) setups. In the literature, work on this topic has been mainly focused on how to emulate downlink channel models, whereas uplink channel is often modeled as free space line-of-sight channel without fading. Modeling realistic bidirectional (i.e., both uplink and downlink) propagation environments is essential to evaluate any bidirectional communication systems. There have been works stressing the importance of emulating full bidirectional channel and proposing possible directions to implement uplink channels in the literature. Nevertheless, there is no currently published work reporting an experimental validation of such concepts. In this paper, a general framework to emulate bidirectional channels for time division duplexing (TDD) and frequency division duplexing (FDD) communication systems is proposed. The proposed technique works for MPAC setups with arbitrary uplink and downlink probe configurations, that is, possibly different probe configurations (e.g., number of probes or their configurations) in the uplink and downlink. The simulation results are further supported by measurements in a practical MPAC setup. The proposed algorithm is shown to be a valid method to emulate bidirectional spatial channel models.


Author(s):  
Hoai Trung Tran

Currently, the cognitive network is receiving much attention due to the advantages it brings to users. An important method in cognitive radio networks is spectrum sensing, as it allows secondary users (SUs) to detect the existence of a primary user (PU). Information of probability of false detection or warning about the PU is sent to a fusion center (FC) by the SUs, from which the FC will decide whether or not to allow the SUs to use the PU spectrum to obtain information. The transmission of information with a high signal to noise ratio (SNR) will increase the FC's ability to detect the existence of the PU. However, researchers are currently focusing on probabilistic formulas assuming that the channel is known ideally or there is nominal channel information at the FC; moreover, one model where the FC only knows the channel correlation matrix. Furthermore, studies are still assuming this is a simple multiple input – multiple output (MIMO) channel model but do not pay much attention to the signal processing at the transmitting and receiving antennas between the SUs and the FCs. A new method introduced in this paper when combining beamforming and hierarchical codebook makes the ability to detect the existence of the PU at the FC significantly increased compared to traditional methods.


2021 ◽  
Vol 9 (3) ◽  
pp. 1-35
Author(s):  
Perambur Neelakanta ◽  
Dolores De Groff

Facilitating newer bands of ‘unused’ segments (windows) of RF spectrum falling in the mm-wave range (above 30+ GHz) and seeking usable stretches across unallocated THz spectrum, could viably be considered for Multiple Input Multiple Output (MIMO) communications. This could accommodate the growing needs of multigigabit 3G/4G applications in outdoor-based backhauls in picocellular networks and in indoor-specific multimedia networking. However, in contrast with cellular and Wi-Fi, wireless systems supporting sub-mm wavelength transreceive communications in the outdoor electromagnetic (EM) ambient could face “drastically different propagation geometry”; also, in indoor contexts, envisaging pertinent spatial-multiplexing with directional, MIMO links could pose grossly diverse propagation geometry across a number of multipaths; as such, channel-models based on stochastic features of diverse MIMO-specific links in the desired test spectrum of mm-wave/THz band are sparsely known and almost non-existent. To alleviate this niche, a method is proposed here to infer sub-mm band MIMO channel-models (termed as “prototypes”) by judiciously sharing “similarity” of details available already pertinent to traditional “models” of lower-side EM spectrum, (namely, VLF through micro-/mm-wave). Relevant method proposed here relies on the “principle of similitude” due to Edgar Buckingham. Exemplar set of “model-to-(inferential)-prototype” transformations are derived and prescribed for an exhaustive set of fading channel models as well as, towards estimating path-loss of various channel statistics in the high-end test spectrum.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kan Zheng ◽  
Suling Ou ◽  
Xuefeng Yin

The exponential traffic growth of wireless communication networks gives rise to both the insufficient network capacity and excessive carbon emissions. Massive multiple-input multiple-output (MIMO) can improve the spectrum efficiency (SE) together with the energy efficiency (EE) and has been regarded as a promising technique for the next generation wireless communication networks. Channel model reflects the propagation characteristics of signals in radio environments and is very essential for evaluating the performances of wireless communication systems. The purpose of this paper is to investigate the state of the art in channel models of massive MIMO. First, the antenna array configurations are presented and classified, which directly affect the channel models and system performance. Then, measurement results are given in order to reflect the main properties of massive MIMO channels. Based on these properties, the channel models of massive MIMO are studied with different antenna array configurations, which can be used for both theoretical analysis and practical evaluation.


2019 ◽  
Vol 27 (1) ◽  
pp. 262-274 ◽  
Author(s):  
Awwab Qasim Jumaah Althahab ◽  
Sameer Abdul Kadhim Alrufaiaat

The problem of wireless channel estimation has been evolving due to some undesirable effects of channel physical properties on transmitted signals. At the receiver end, distortions, delays, attenuations, interferences, and phase shifts are the most issues encounter together with the received signals. In order to overcome channel effects and provide almost a perfect quality of data transmission, channel parameter estimation is needed. In Multiple Input-Multiple Output systems (MIMO), channel estimation is a more complicated step as compared with the Single Input-Single Output systems, SISO, because of the fact that the number of sub-channels that needs estimate is much greater than SISO systems. The fundamental objective of this research paper is to go over the famous and efficient algorithms that have been innovated to solve the problem of MIMO channel estimation in wireless communication systems. In this paper, these techniques have been classified into three groups: non-blind, semi-blind and blind estimation. For each group, a brief illustration is presented for familiar estimation algorithms. Finally, we compare between these techniques based on computational complexity, latency and estimation accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Kaizhen Liu ◽  
Zaixue Wei ◽  
Sibo Chen

Vehicle-to-vehicle communication plays a strong role in modern wireless communication systems, appropriate channel models are of great importance in future research, and propagation environment with slope is one special kind. In this study, a novel three-dimensional nonstationary multiple-input multiple-output channel model for the sub-6 GHz band is proposed. This model is a regular-shaped multicluster geometry-based analytical model, and it combines the line-of-sight component and multicluster scattering rays as the nonline-of-sight components. Each cluster of scatterers represents the influence of different moving vehicles on or near a slope, and scatterers are, respectively, distributed within two spheres around the transmitter and the receiver. In this model, it is considered that the azimuth and elevation angles of departure and arrival are jointly distributed and conform to the von Mises–Fisher distribution, which can easily control the range and concentration of the scatterers within spheres to mimic the real-world situation well. Moreover, the impulse response and the autocorrelation function of the corresponding channel is derived and proposed; then, the Doppler power spectrum density of the channel is simulated and analyzed. In addition, the nonstationary characteristics of the presented channel model are observed through simulations. Finally, the simulation results are compared with measurement data in order to validate the utility of the proposed model.


2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Agbotiname Lucky Imoize ◽  
Augustus Ehiremen Ibhaze ◽  
Aderemi A. Atayero ◽  
K. V. N. Kavitha

The field of wireless communication networks has witnessed a dramatic change over the last decade due to sophisticated technologies deployed to satisfy various demands peculiar to different data-intensive wireless applications. Consequently, this has led to the aggressive use of the available propagation channels to fulfill the minimum quality of service (QoS) requirement. A major barometer used to gauge the performance of a wireless communication system is the spectral efficiency (SE) of its communication channels. A key technology used to improve SE substantially is the multiple input multiple output (MIMO) technique. This article presents a detailed survey of MIMO channel models in wireless communication systems. First, we present the general MIMO channel model and identified three major MIMO channel models, viz., the physical, analytical, and standardized models. The physical models describe the MIMO channel using physical parameters. The analytical models show the statistical features of the MIMO channel with respect to the measured data. The standardized models provide a unified framework for modern radio propagation architecture, advanced signal processing, and cutting-edge multiple access techniques. Additionally, we examined the strengths and limitations of the existing channel models and discussed model design, development, parameterization, implementation, and validation. Finally, we present the recent 3GPP-based 3D channel model, the transitioning from 2D to 3D channel modeling, discuss open issues, and highlight vital lessons learned for future research exploration in MIMO communication systems.


2021 ◽  
Vol 42 (2) ◽  
pp. 209
Author(s):  
Jean Marcel Faria Tonin ◽  
Taufik Abrao

Detection in multiple-input-multiple-output (MIMO) wireless communication systems is a crucial procedure in receivers since the multiple access transmission schemes generate interference due to the simultaneous transmission along with the several antennas, unlike single-input-single-output (SISO) transmission schemes. Precoding is a technique in MIMO systems used to mitigate the effects of the channel over the received signal. Hence, it is possible to adjust continuously the transmitted information to reverse the effect of the wireless channel at the receiver side. In this work, linear sub-optimal detectors and precoders for massive MIMO (M-MIMO) systems are implemented, analyzed, and compared in terms of performance-complexity trade-off. It is also being considered numerical results in both channel scenarios: a) receiver and transmitter have perfect channel state information (CSI); b) complex channel coefficients are estimated with different levels of inaccuracy. Monte-Carlo simulations (MCS) reveal that linear zero-forcing (ZF) and minimum mean squared error (MMSE) massive MIMO detectors result in a certain robustness against multi-user interference when operating under low and medium system loading, L = K/M, thanks to the favourable propagation phenomenon arising in massive MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document