scholarly journals Linear Temporal Public Announcement Logic: a new perspective for reasoning the knowledge of multi-classifiers

Author(s):  
Amirhoshang Hoseinpour Dehkordi ◽  
Majid Alizadeh ◽  
Ali Movaghar

Current applied intelligent systems have crucial shortcomings either in reasoning the gathered knowledge, or representation of comprehensive integrated information. To address these limitations, we develop a formal transition system which is applied to the common artificial intelligence (AI) systems, to reason about the findings. The developed model was created by combining the Public Announcement Logic (PAL) and the Linear Temporal Logic (LTL), which will be done to analyze both single-framed data and the following time-series data. To do this, first, the achieved knowledge by an AI-based system (i.e., classifiers) for an individual time-framed data, will be taken, and then, it would be modeled by a PAL. This leads to developing a unified representation of knowledge, and the smoothness in the integration of the gathered and external experiences. Therefore, the model could receive the classifier's predefined -or any external- knowledge, to assemble them in a unified manner. Alongside the PAL, all the timed knowledge changes will be modeled, using a temporal logic transition system. Later, following by the translation of natural language questions into the temporal formulas, the satisfaction leads the model to answer that question. This interpretation integrates the information of the recognized input data, rules, and knowledge. Finally, we suggest a mechanism to reduce the investigated paths for the performance improvements, which results in a partial correction for an object-detection system.

2020 ◽  
Author(s):  
Amirhoshang Hoseinpour Dehkordi ◽  
Majid Alizadeh ◽  
Ali Movaghar

Current applied intelligent systems have crucial shortcomings either in reasoning the gathered knowledge, or representation of comprehensive integrated information. To address these limitations, we develop a formal transition system which is applied to the common artificial intelligence (AI) systems, to reason about the findings. The developed model was created by combining the Public Announcement Logic (PAL) and the Linear Temporal Logic (LTL), which will be done to analyze both single-framed data and the following time-series data. To do this, first, the achieved knowledge by an AI-based system (i.e., classifiers) for an individual time-framed data, will be taken, and then, it would be modeled by a PAL. This leads to developing a unified representation of knowledge, and the smoothness in the integration of the gathered and external experiences. Therefore, the model could receive the classifier's predefined -or any external- knowledge, to assemble them in a unified manner. Alongside the PAL, all the timed knowledge changes will be modeled, using a temporal logic transition system. Later, following by the translation of natural language questions into the temporal formulas, the satisfaction leads the model to answer that question. This interpretation integrates the information of the recognized input data, rules, and knowledge. Finally, we suggest a mechanism to reduce the investigated paths for the performance improvements, which results in a partial correction for an object-detection system.


Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 49
Author(s):  
Anton Romanov ◽  
Valeria Voronina ◽  
Gleb Guskov ◽  
Irina Moshkina ◽  
Nadezhda Yarushkina

The development of the economy and the transition to industry 4.0 creates new challenges for artificial intelligence methods. Such challenges include the processing of large volumes of data, the analysis of various dynamic indicators, the discovery of complex dependencies in the accumulated data, and the forecasting of the state of processes. The main point of this study is the development of a set of analytical and prognostic methods. The methods described in this article based on fuzzy logic, statistic, and time series data mining, because data extracted from dynamic systems are initially incomplete and have a high degree of uncertainty. The ultimate goal of the study is to improve the quality of data analysis in industrial and economic systems. The advantages of the proposed methods are flexibility and orientation to the high interpretability of dynamic data. The high level of the interpretability and interoperability of dynamic data is achieved due to a combination of time series data mining and knowledge base engineering methods. The merging of a set of rules extracted from the time series and knowledge base rules allow for making a forecast in case of insufficiency of the length and nature of the time series. The proposed methods are also based on the summarization of the results of processes modeling for diagnosing technical systems, forecasting of the economic condition of enterprises, and approaches to the technological preparation of production in a multi-productive production program with the application of type 2 fuzzy sets for time series modeling. Intelligent systems based on the proposed methods demonstrate an increase in the quality and stability of their functioning. This article contains a set of experiments to approve this statement.


2016 ◽  
Author(s):  
Jun-Whan Lee ◽  
Sun-Cheon Park ◽  
Duk Kee Lee ◽  
Jong Ho Lee

Abstract. Timely detection of tsunamis with water-level records is a critical but logistically challenging task because of outliers and gaps. We propose a tsunami arrival time detection system (TADS) that can be applied to discontinuous time-series data with outliers. TADS consists of three major algorithms that are designed to update at every new data acquisition: outlier detection, gap-filling, and tsunami detection. To detect a tsunami from a record containing outliers and gaps, we propose the concept of the event period. In this study, we applied this concept in our test of the TADS at the Ulleung-do surge gauge located in the East Sea. We calibrated the thresholds to identify tsunami arrivals based on the 2011 Tohoku tsunami, and the results show that the overall performance of TADS is effective at detecting a small tsunami signal superimposed on both an outlier and gap.


2019 ◽  
Author(s):  
William Hedley Thompson ◽  
Jessey Wright ◽  
James M. Shine ◽  
Russell A. Poldrack

AbstractInteracting sets of nodes and fluctuations in their interaction are important properties of a dynamic network system. In some cases the edges reflecting these interactions are directly quantifiable from the data collected. However, in many cases (such as functional magnetic resonance imaging (fMRI) data), the edges must be inferred from statistical relations between the nodes. Here we present a new method, Temporal Communities through Trajectory Clustering (TCTC), that derives time-varying communities directly from time-series data collected from the nodes in a network. First, we verify TCTC on resting and task fMRI data by showing that time-averaged results correspond with expected static connectivity results. We then show that the time-varying communities correlate and predict single-trial behaviour. This new perspective on temporal community detection of node-collected data identifies robust communities revealing ongoing spatiotemporal community configurations during task performance.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6679
Author(s):  
Isack Thomas Nicholaus ◽  
Jun Ryeol Park ◽  
Kyuil Jung ◽  
Jun Seoung Lee ◽  
Dae-Ki Kang

Anomaly detection is one of the crucial tasks in daily infrastructure operations as it can prevent massive damage to devices or resources, which may then lead to catastrophic outcomes. To address this challenge, we propose an automated solution to detect anomaly pattern(s) of the water levels and report the analysis and time/point(s) of abnormality. This research’s motivation is the level difficulty and time-consuming managing facilities responsible for controlling water levels due to the rare occurrence of abnormal patterns. Consequently, we employed deep autoencoder, one of the types of artificial neural network architectures, to learn different patterns from the given sequences of data points and reconstruct them. Then we use the reconstructed patterns from the deep autoencoder together with a threshold to report which patterns are abnormal from the normal ones. We used a stream of time-series data collected from sensors to train the model and then evaluate it, ready for deployment as the anomaly detection system framework. We run extensive experiments on sensor data from water tanks. Our analysis shows why we conclude vanilla deep autoencoder as the most effective solution in this scenario.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3310 ◽  
Author(s):  
Md. Nazmul Hasan ◽  
Rafia Nishat Toma ◽  
Abdullah-Al Nahid ◽  
M M Manjurul Islam ◽  
Jong-Myon Kim

Among an electricity provider’s non-technical losses, electricity theft has the most severe and dangerous effects. Fraudulent electricity consumption decreases the supply quality, increases generation load, causes legitimate consumers to pay excessive electricity bills, and affects the overall economy. The adaptation of smart grids can significantly reduce this loss through data analysis techniques. The smart grid infrastructure generates a massive amount of data, including the power consumption of individual users. Utilizing this data, machine learning and deep learning techniques can accurately identify electricity theft users. In this paper, an electricity theft detection system is proposed based on a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) architecture. CNN is a widely used technique that automates feature extraction and the classification process. Since the power consumption signature is time-series data, we were led to build a CNN-based LSTM (CNN-LSTM) model for smart grid data classification. In this work, a novel data pre-processing algorithm was also implemented to compute the missing instances in the dataset, based on the local values relative to the missing data point. Furthermore, in this dataset, the count of electricity theft users was relatively low, which could have made the model inefficient at identifying theft users. This class imbalance scenario was addressed through synthetic data generation. Finally, the results obtained indicate the proposed scheme can classify both the majority class (normal users) and the minority class (electricity theft users) with good accuracy.


2020 ◽  
Vol 70 (6) ◽  
pp. 619-625
Author(s):  
Rizul Aggarwal ◽  
Anjali Goswami ◽  
Jitender Kumar ◽  
Gwyneth Abdiel Chullai

Perimeter surveillance systems play an important role in the safety and security of the armed forces. These systems tend to generate alerts in advent of anomalous situations, which require human intervention. The challenge is the generation of false alerts or alert flooding which makes these systems inefficient. In this paper, we focus on short-term as well as long-term prediction of alerts in the perimeter intrusion detection system. We have explored the dependent and independent aspects of the alert data generated over a period of time. Short-term prediction is realized by exploiting the independent aspect of data by narrowing it down to a time-series problem. Time-series analysis is performed by extracting the statistical information from the historical alert data. A dual-stage approach is employed for analyzing the time-series data and support vector regression is used as the regression technique. It is helpful to predict the number of alerts for the nth hour. Additionally, to understand the dependent aspect, we have investigated that the deployment environment has an impact on the alerts generated. Long-term predictions are made by extracting the features based on the deployment environment and training the dataset using different regression models. Also, we have compared the predicted and expected alerts to recognize anomalous behaviour. This will help in realizing the situations of alert flooding over the potential threat.


2017 ◽  
Vol 29 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Yoshimi Ui ◽  
◽  
Yutaka Akiba ◽  
Shohei Sugano ◽  
Ryosuke Imai ◽  
...  

[abstFig src='/00290002/09.jpg' width='300' text='Standard Lifilm configuration' ] In this study, we propose an excretion detection system, Lifi, which does not require sensors inside diapers, and we verify its capabilities. It consists of a sheet with strategically placed air intakes, a set of gas sensors, and a processing unit with a newly developed excretion detection algorithm. The gas sensor detects chemicals with odor in the excrement, such as hydrogen sulfide and urea. The time-series data from the gas sensor was used for the detection of not only excretion, but also of the presence/absence of the cared person on the bed. We examined two algorithms, one with a simple threshold and another based on the clustering of sensor data, obtained using the<span class=”bold”>k</span>-means method. The results from both algorithms were satisfactory and similar, once the algorithms were customized for each cared person. However, we adopted the clustering algorithm because it possesses a higher level of flexibility that can be explored and exploited. Lifi was conceived from an overwhelming and serious desire of caretakers to discover the excretion of bed-ridden cared persons, without opening their diapers. We believe that Lifi, along with the clustering algorithm, can help caretakers in this regard.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 823 ◽  
Author(s):  
Lei Liu ◽  
Dongli Song ◽  
Zilin Geng ◽  
Zejun Zheng

An axle box bearing is one of the most important components of high-speed EMUs (electric multiple units), which runs at a very fast speed, suffers a heavy load, and operates under various complex working conditions. Once a bearing fault occurs, it not only has an enormous impact on the railway system, but also poses a threat to personal safety. Therefore, there is significant value in studying a real-time fault early warning of a high-speed EMU axle box bearing. However, to our best knowledge, there are three obvious defects in the existing fault early warning methods used for high-speed EMU axle box bearings: (1) these methods based on vibration are extremely mature, but there are no vibration sensors installed in high-speed EMU axle box because it will greatly increase the manufacturing cost; (2) a TADS (trackside acoustic device system) can effectively detect early failures, but only a portion of railways are equipped with such a facility; and (3) an EMU-ODS (electric multiple unit onboard detection system) has reported numerous untimely warnings, along with warnings of frequent occurrence being missed. Whereupon, a method is proposed to realize the fault early warning of an axle box bearing without installing a vibration sensor on the high-speed EMU in service, namely a MLSTM-iForest (multilayer long short-term memory–isolation forest). First, the time-series data of the temperature-related variables of the axle box bearing is used as the input of MLSTM to predict the axle box bearing temperature in the future. Then, the deviation index of the predicted axle box bearing temperature is calculated. Finally, the deviation index is input into an iForest algorithm for unsupervised classification to realize the fault early warning of an axle box bearing. Experimental results on high-speed EMU operation data sets demonstrated the availability and feasibility of the presented method toward achieving early fault warnings of a high-speed EMU axle box bearing.


Sign in / Sign up

Export Citation Format

Share Document