scholarly journals Improvement of LoRa Communication Scalability using Machine Learning Based Adaptiveness

Author(s):  
Alexander Valach ◽  
Dominik Macko

<div>Number of embedded devices connected to the Internet is rapidly increasing, especially in the era of the Internet of Things (IoT). The growing number of IoT devices communicating wirelessly causes a communication-parameters selection problem, implying the increasing number of communication collisions. Multiple factors of IoT networks signify this problem, such as inability to communication-channel listening prior to the transmission (due to longer distances), energy constrains (due to inability of powering devices from the grid), or limitation of duty cycle and high interference (due to usage of unlicensed band in communication technologies). This article is focused on alleviating this problem in LoRa networks, which is one of the most promising technology for long-range and low-power</div><div>communication. We utilize the existing LoRa@FIIT protocol to achieve energy-efficient communication. The scalability of the LoRa network is increased by modifying the communication-parameters selection algorithm. By ensuring of quality of service mechanism at each node in the infrastructure, the application domain of the proposed architecture is widened. The simulation-based experimental results showed a significantly reduced number of collisions for mobile nodes, which reduces the channel congestion and the wasted energy by retransmissions.</div>

2021 ◽  
Author(s):  
Alexander Valach ◽  
Dominik Macko

<div>Number of embedded devices connected to the Internet is rapidly increasing, especially in the era of the Internet of Things (IoT). The growing number of IoT devices communicating wirelessly causes a communication-parameters selection problem, implying the increasing number of communication collisions. Multiple factors of IoT networks signify this problem, such as inability to communication-channel listening prior to the transmission (due to longer distances), energy constrains (due to inability of powering devices from the grid), or limitation of duty cycle and high interference (due to usage of unlicensed band in communication technologies). This article is focused on alleviating this problem in LoRa networks, which is one of the most promising technology for long-range and low-power</div><div>communication. We utilize the existing LoRa@FIIT protocol to achieve energy-efficient communication. The scalability of the LoRa network is increased by modifying the communication-parameters selection algorithm. By ensuring of quality of service mechanism at each node in the infrastructure, the application domain of the proposed architecture is widened. The simulation-based experimental results showed a significantly reduced number of collisions for mobile nodes, which reduces the channel congestion and the wasted energy by retransmissions.</div>


2021 ◽  
Vol 9 (1) ◽  
pp. 17-28
Author(s):  
Siddhartha Vadlamudi

The evolvement of IT has open new doors in connecting many devices to the worldwide web that successively produce data around the physical setting using the IoT. However, the system of message turns out to be slightly intricate in human specialization-internet of things communication for the reason that the IoT is a system including diverse objects transferring data This study examines the hypothetical pathway by which the changes in source attribution that is multiple against single and specialization that is multi-functionality against single functionality of IoT devices affect the quality of human- internet of things interaction. The result from the study obtained from 80 participants that took part in the experiment shows that multiple source attribution improves the condition of information basically for the low-involvement people supports further probes the multiple source effects. However, this study recommends improvement of attribution source and human specialization-IoT.


Author(s):  
Yong Kyu Lee

This chapter reviews the internet of things (IoT) as a key component of a smart city and how it is applied to consumers' daily lives and business. The IoT is a part of information and communication technology (ICT) and is considered a powerful means to improve consumers' quality of life. The “thing” could be any object which has internet capability, such as wearable devices and smart TVs/phones/speakers. Several studies have identified driving factors that have led consumers to adopting them, but also concerns of consumers' resistance to IoT devices. The three major fields of application of IoT technologies were selected to review the role of the IoT in consumers' daily lives and business.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 20-25
Author(s):  
Y. Avakyan ◽  
R. Kirichek ◽  
V. Kulik

This paper discusses methods for testing data channels under a functional load of traffic generated by devices and applications of the Internet of things. The research of data channels is carried out according to the following quality of service parameters: throughput, network latency, network jitter, packet loss percentage. To measure these parameters, it is proposed to use the following types of testing: stress testing, benchmark testing. A model network including devices and application of the Internet of things was developed to define functional load models. The considered methods can be used to develop sys-tems for testing data channels of the Internet of things.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Alem Čolaković ◽  
Adisa Hasković Džubur ◽  
Bakir Karahodža

Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications.


2020 ◽  
Vol 14 (2) ◽  
pp. 264-270
Author(s):  
Andrea Liliana Fagua Fagua ◽  
José Custodio Najar Pacheco

In recent years, the Internet has evolved till become the Internet of Things (IoT for its acronym). This is one of the most important and significant inventions of all humanity, generating a direct impact on the way of how people live, think and act. It is one of the most used terms by anyone who talks about intelligent connectivity. Internet of things changes everything, is the answer to connect to the network an incredible number of people and link everyday objects, which are equipped with sensors, actuators and communication technologies and they are used to exchange information from the physical world through the Internet, offering data in real time and monitored through the network. Thanks to IoT, more and more companies are integrating small sensors to real-world objects, which provide information about almost everything that can be measured, so the amount of information circulating through networks grows exponentially. Smart cities are a good example of the benefits that IoT brings, by improving the quality of life of people with the services that are offered in an efficient and sustainable way. The installation of IoT brings great challenges focused on information security in organizations, but also opportunities for development in all areas of daily life and excellent ideas for innovation.


Author(s):  
Edward T. Chen

The Internet of Things (IoT) has the potential to increase quality of life, heighten performance of systems and processes, and save valuable time for businesses and people. Common objects and devices are being linked with Internet connectivity and have capabilities for data analytics that affect day-to-day experiences of both individuals and businesses. The notions of Smart Health, Smart Cities, and Smart Living come into play as the Internet of Things plays a role in today's world. This chapter presents IoT devices and application examples as well as descriptions of the benefits and limitations alongside an assessment of each respective technology's potential for success in the future. Security and privacy are important factors that need to be addressed within the different domains. This chapter addresses these potentials, issues, and challenges for managers to be prepared for the new wave brought forth by the IoT.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 2853 ◽  
Author(s):  
Berto Gomes ◽  
Luiz Muniz ◽  
Francisco da Silva e Silva ◽  
Davi dos Santos ◽  
Rafael Lopes ◽  
...  

2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Sign in / Sign up

Export Citation Format

Share Document