scholarly journals Introduction to Spin Wave Computing

Author(s):  
Abdulqader Mahmoud ◽  
Florin Ciubotaru ◽  
Frederic Vanderveken ◽  
Andrii V. Chumak ◽  
Said Hamdioui ◽  
...  

This paper provides a tutorial overview over recent vigorous efforts to develop computing systems based on spin waves instead of charges and voltages. Spin-wave computing can be considered as a subfield of spintronics, which uses magnetic excitations for computation and memory applications. The tutorial combines backgrounds in spin-wave and device physics as well as circuit engineering to create synergies between the physics and electrical engineering communities to advance the field towards practical spin-wave circuits. After an introduction to magnetic interactions and spin-wave physics, all relevant basic aspects of spin-wave computing and individual spin-wave devices are reviewed. The focus is on spin-wave majority gates as they are the most prominently pursued device concept. Subsequently, we discuss the current status and the challenges to combine spin-wave gates and obtain circuits and ultimately computing systems, considering essential aspects such as gate interconnection, logic level restoration, input-output consistency, and fan-out achievement. We argue that spin-wave circuits need to be embedded in conventional CMOS circuits to obtain complete functional hybrid computing systems. The state of the art of benchmarking such hybrid spin-wave--CMOS systems is reviewed and the current challenges to realize such systems are discussed. The benchmark indicates that hybrid spin-wave--CMOS systems promise ultralow-power operation and may ultimately outperform conventional CMOS circuits in terms of the power-delay-area product. Current challenges to achieve this goal include low-power signal restoration in spin-wave circuits as well as efficient spin-wave transducers.

2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Florin Ciubotaru ◽  
Frederic Vanderveken ◽  
Andrii V. Chumak ◽  
Said Hamdioui ◽  
...  

This paper provides a tutorial overview over recent vigorous efforts to develop computing systems based on spin waves instead of charges and voltages. Spin-wave computing can be considered as a subfield of spintronics, which uses magnetic excitations for computation and memory applications. The tutorial combines backgrounds in spin-wave and device physics as well as circuit engineering to create synergies between the physics and electrical engineering communities to advance the field towards practical spin-wave circuits. After an introduction to magnetic interactions and spin-wave physics, all relevant basic aspects of spin-wave computing and individual spin-wave devices are reviewed. The focus is on spin-wave majority gates as they are the most prominently pursued device concept. Subsequently, we discuss the current status and the challenges to combine spin-wave gates and obtain circuits and ultimately computing systems, considering essential aspects such as gate interconnection, logic level restoration, input-output consistency, and fan-out achievement. We argue that spin-wave circuits need to be embedded in conventional CMOS circuits to obtain complete functional hybrid computing systems. The state of the art of benchmarking such hybrid spin-wave--CMOS systems is reviewed and the current challenges to realize such systems are discussed. The benchmark indicates that hybrid spin-wave--CMOS systems promise ultralow-power operation and may ultimately outperform conventional CMOS circuits in terms of the power-delay-area product. Current challenges to achieve this goal include low-power signal restoration in spin-wave circuits as well as efficient spin-wave transducers.


2018 ◽  
Vol 12 (02) ◽  
pp. 191-213
Author(s):  
Nan Zhu ◽  
Yangdi Lu ◽  
Wenbo He ◽  
Hua Yu ◽  
Jike Ge

The sheer volume of contents generated by today’s Internet services is stored in the cloud. The effective indexing method is important to provide the content to users on demand. The indexing method associating the user-generated metadata with the content is vulnerable to the inaccuracy caused by the low quality of the metadata. While the content-based indexing does not depend on the error-prone metadata, the state-of-the-art research focuses on developing descriptive features and misses the system-oriented considerations when incorporating these features into the practical cloud computing systems. We propose an Update-Efficient and Parallel-Friendly content-based indexing system, called Partitioned Hash Forest (PHF). The PHF system incorporates the state-of-the-art content-based indexing models and multiple system-oriented optimizations. PHF contains an approximate content-based index and leverages the hierarchical memory system to support the high volume of updates. Additionally, the content-aware data partitioning and lock-free concurrency management module enable the parallel processing of the concurrent user requests. We evaluate PHF in terms of indexing accuracy and system efficiency by comparing it with the state-of-the-art content-based indexing algorithm and its variances. We achieve the significantly better accuracy with less resource consumption, around 37% faster in update processing and up to 2.5[Formula: see text] throughput speedup in a multi-core platform comparing to other parallel-friendly designs.


2018 ◽  
Vol 179 ◽  
pp. 01014 ◽  
Author(s):  
P. Mastrolia ◽  
M. Passera ◽  
A. Primo ◽  
U. Schubert ◽  
W. J. Torres Bobadilla

We report on the current status of the analytic evaluation of the two-loop corrections to the μescattering in Quantum Electrodynamics, presenting state-of-the art techniques which have been developed to address this challenging task.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000995-001015
Author(s):  
Tom Strothmann

The potential of Thermo compression Bonding (TCB) has been widely discussed for several years, but it has not previously achieved widespread production use. TCB has now begun the transition to an accepted high volume manufacturing technology driven primarily by the memory market, but with wider adoption close for non-memory applications. Several key factors have enabled this transition, including advanced TCB equipment with higher UPH for cost reduction and advanced methods of inline process control. The unique requirements of TCB demand absolute process control, simultaneous data logging capability for multiple key factors in the process and portability of the process between tools. This introduces a level of sophistication that has not previously been required for BE assembly processes. This presentation will review state of the art TCB technology and the fundamental equipment requirements to support the transition to HVM.


2018 ◽  
Vol 8 (10) ◽  
pp. 1737 ◽  
Author(s):  
Arshed Mohammed ◽  
Sallehuddin Haris ◽  
Mohd Nuawi

Recent developments in ultrasonic material testing have increased the need to evaluate the current status of the different applications of piezoelectric elements (PEs). This research have reviewed state-of-the-art emerging new technology and the role of PEs in tests for a number of mechanical properties, such as creep, fracture toughness, hardness, and impact toughness, among others. In this field, importance is given to the following variables, namely, (a) values of the natural frequency to PEs, (b) type and dimensions of specimens, and (c) purpose of the tests. All these variables are listed in three tables to illustrate the nature of their differences in these kinds of tests. Furthermore, recent achievements in this field are emphasized in addition to the many important studies that highlight the role of PEs.


2011 ◽  
Vol 20 (01) ◽  
pp. 15-20
Author(s):  
S.B. Gogia ◽  
G. Hartvigsen ◽  
A.J. Maeder

SummaryTelehealth has long been seen as a means of increasing access and quality of care while decreasing costs and logistical burden for remote health care delivery. Underlying technology to support Telehealth has been developed commercially. However, its widespread adoption has been hindered by numerous clinical, social, political, economic and management factors. This paper examines trends which may help to address this situation.First we consider the current status of Telehealth based on some state-of-the-art reviews. Then we present some new future modes of Telehealth services, as described by various prominent authors. From these we identify some common directional themes and fundamental issues affecting the success of future Telehealth innovations.This position paper advances a view that Telehealth in the future will be much more driven by widespread pressure from two different drivers: more ubiquitous connectivity and related technological capabilities due to greater diversity in human communication practices, and new models of care emerging from diverse widespread movements towards health services reform.The IMIA Working Group on Telehealth work agenda will address some specific items within the areas described above.


1993 ◽  
Vol 335 ◽  
Author(s):  
Brian A. Vaartstra ◽  
R. A. Gardiner ◽  
D. C. Gordon ◽  
R. L. Ostrander ◽  
A. L. Rheingold

AbstractBarium titanate and barium-strontium titanate (BST) are high dielectric materials, likely to replace state-of-the-art capacitor materials for memory applications. Chemical Vapor Deposition (CVD) of these materials has been hampered, particularly by the lack of suitable precursors for barium. Although attempts to make volatile metal-organic barium compounds have met with some progress, a suitably stable, volatile barium source is still in demand. This paper will highlight recent developments at ATM, including syntheses and structures of polyamine and glycol ether adducts which have been designed to limit aggregation of barium diketonates, and stabilize the adducts with respect to ligand dissociation.


2019 ◽  
Vol 20 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Natalie Stephenson ◽  
Emily Shane ◽  
Jessica Chase ◽  
Jason Rowland ◽  
David Ries ◽  
...  

Background:Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.Methods:We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.Results:Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.Conclusion:The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.


Author(s):  
JOST BERTHOLD ◽  
HANS-WOLFGANG LOIDL ◽  
KEVIN HAMMOND

AbstractOver time, several competing approaches to parallel Haskell programming have emerged. Different approaches support parallelism at various different scales, ranging from small multicores to massively parallel high-performance computing systems. They also provide varying degrees of control, ranging from completely implicit approaches to ones providing full programmer control. Most current designs assume a shared memory model at the programmer, implementation and hardware levels. This is, however, becoming increasingly divorced from the reality at the hardware level. It also imposes significant unwanted runtime overheads in the form of garbage collection synchronisation etc. What is needed is an easy way to abstract over the implementation and hardware levels, while presenting a simple parallelism model to the programmer. The PArallEl shAred Nothing runtime system design aims to provide a portable and high-level shared-nothing implementation platform for parallel Haskell dialects. It abstracts over major issues such as work distribution and data serialisation, consolidating existing, successful designs into a single framework. It also provides an optional virtual shared-memory programming abstraction for (possibly) shared-nothing parallel machines, such as modern multicore/manycore architectures or cluster/cloud computing systems. It builds on, unifies and extends, existing well-developed support for shared-memory parallelism that is provided by the widely used GHC Haskell compiler. This paper summarises the state-of-the-art in shared-nothing parallel Haskell implementations, introduces the PArallEl shAred Nothing abstractions, shows how they can be used to implement three distinct parallel Haskell dialects, and demonstrates that good scalability can be obtained on recent parallel machines.


Sign in / Sign up

Export Citation Format

Share Document