scholarly journals A deep learning approach for detecting the behavior of people having personality disorders towards Covid-19 from Twitter

Author(s):  
Mourad Ellouze ◽  
Seifeddine Mechti ◽  
Moez Krichen ◽  
vinayakumar R ◽  
Lamia Hadrich Belguith

This paper proposes an architecture taking advantage of artificial intelligence and text mining techniques in order to: (i) detect paranoid people by classifying their set of tweets into two classes (Paranoid/not-Paranoid), (ii) ensure the surveillance of these people by classifying their tweets about Covid-19 into two classes (person with normal behavior, person with inappropriate behavior). These objectives are achieved using an approach that takes advantage of different information related to the textual part, user and tweets for features selection task and deep neural network for the classification task. We obtained as an F-score rate 70% for the detection of paranoid people and 73% for the detection of the behavior of these people towards Covid-19. The obtained results are motivating and encouraging researchers to improve them given the interest and the importance of this research axis.

2021 ◽  
Author(s):  
Mourad Ellouze ◽  
Seifeddine Mechti ◽  
Moez Krichen ◽  
vinayakumar R ◽  
Lamia Hadrich Belguith

This paper proposes an architecture taking advantage of artificial intelligence and text mining techniques in order to: (i) detect paranoid people by classifying their set of tweets into two classes (Paranoid/not-Paranoid), (ii) ensure the surveillance of these people by classifying their tweets about Covid-19 into two classes (person with normal behavior, person with inappropriate behavior). These objectives are achieved using an approach that takes advantage of different information related to the textual part, user and tweets for features selection task and deep neural network for the classification task. We obtained as an F-score rate 70% for the detection of paranoid people and 73% for the detection of the behavior of these people towards Covid-19. The obtained results are motivating and encouraging researchers to improve them given the interest and the importance of this research axis.


Ingenius ◽  
2021 ◽  
Author(s):  
Lucas C. Lampier ◽  
Yves L. Coelho ◽  
Eliete M. O. Caldeira ◽  
Teodiano Bastos-Filho

This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.


2021 ◽  
Vol 16 ◽  
pp. 668-685
Author(s):  
Shankargoud Patil ◽  
Kappargaon S. Prabhushetty

In today's environment, video surveillance is critical. When artificial intelligence, machine learning, and deep learning were introduced into the system, the technology had progressed much too far. Different methods are in place using the above combinations to help distinguish various wary activities from the live tracking of footages. Human behavior is the most unpredictable, and determining whether it is suspicious or normal is quite tough. In a theoretical setting, a deep learning approach is utilized to detect suspicious or normal behavior and sends an alarm to the nearby people if suspicious activity is predicted. In this paper, data fusion technique is used for feature extraction which gives an accurate outcome. Moreover, the classes are classified by the well effective machine learning approach of modified deep neural network (M-DNN), that predicts the classes very well. The proposed method gains 95% accuracy, as well the advanced system is contrast with previous methods like artificial neural network (ANN), random forest (RF) and support vector machine (SVM). This approach is well fitted for dynamic and static conditions.


Author(s):  
A. Sokolova ◽  
A. Konushin

In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.


Author(s):  
Kayalvizhi S. ◽  
Thenmozhi D.

Catch phrases are the important phrases that precisely explain the document. They represent the context of the whole document. They can also be used to retrieve relevant prior cases by the judges and lawyers for assuring justice in the domain of law. Currently, catch phrases are extracted using statistical methods, machine learning techniques, and deep learning techniques. The authors propose a sequence to sequence (Seq2Seq) deep neural network to extract catch phrases from legal documents. They have employed several layers, namely embedding layer, encoder-decoder layer, projection layer, and loss layer to build the deep neural network. The methodology is evaluated on IRLeD@FIRE-2017 dataset and the method has obtained 0.787 and 0.607 as mean average precision and recall scores respectively. Results show that the proposed method outperforms the existing systems.


Ingenius ◽  
2021 ◽  
Author(s):  
Lucas C. Lampier ◽  
Yves L. Coelho ◽  
Eliete M. O. Caldeira ◽  
Teodiano Bastos-Filho

This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Min Liu ◽  
Shimin Wang ◽  
Hu Chen ◽  
Yunsong Liu

Abstract Background Recently, there has been considerable innovation in artificial intelligence (AI) for healthcare. Convolutional neural networks (CNNs) show excellent object detection and classification performance. This study assessed the accuracy of an artificial intelligence (AI) application for the detection of marginal bone loss on periapical radiographs. Methods A Faster region-based convolutional neural network (R-CNN) was trained. Overall, 1670 periapical radiographic images were divided into training (n = 1370), validation (n = 150), and test (n = 150) datasets. The system was evaluated in terms of sensitivity, specificity, the mistake diagnostic rate, the omission diagnostic rate, and the positive predictive value. Kappa (κ) statistics were compared between the system and dental clinicians. Results Evaluation metrics of AI system is equal to resident dentist. The agreement between the AI system and expert is moderate to substantial (κ = 0.547 and 0.568 for bone loss sites and bone loss implants, respectively) for detecting marginal bone loss around dental implants. Conclusions This AI system based on Faster R-CNN analysis of periapical radiographs is a highly promising auxiliary diagnostic tool for peri-implant bone loss detection.


Author(s):  
Ding Liu ◽  
Bihan Wen ◽  
Xianming Liu ◽  
Zhangyang Wang ◽  
Thomas Huang

Conventionally, image denoising and high-level vision tasks are handled separately in computer vision. In this paper, we cope with the two jointly and explore the mutual influence between them. First we propose a convolutional neural network for image denoising which achieves the state-of-the-art performance. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We demonstrate that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network can generate more visually appealing results. To the best of our knowledge, this is the first work investigating the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Halit Yaşar ◽  
Gültekin Çağıl ◽  
Orhan Torkul ◽  
Merve Şişci

AbstractEngine tests are both costly and time consuming in developing a new internal combustion engine. Therefore, it is of great importance to predict engine characteristics with high accuracy using artificial intelligence. Thus, it is possible to reduce engine testing costs and speed up the engine development process. Deep Learning is an effective artificial intelligence method that shows high performance in many research areas through its ability to learn high-level hidden features in data samples. The present paper describes a method to predict the cylinder pressure of a Homogeneous Charge Compression Ignition (HCCI) engine for various excess air coefficients by using Deep Neural Network, which is one of the Deep Learning methods and is based on the Artificial Neural Network (ANN). The Deep Learning results were compared with the ANN and experimental results. The results show that the difference between experimental and the Deep Neural Network (DNN) results were less than 1%. The best results were obtained by Deep Learning method. The cylinder pressure was predicted with a maximum accuracy of 97.83% of the experimental value by using ANN. On the other hand, the accuracy value was increased up to 99.84% using DNN. These results show that the DNN method can be used effectively to predict cylinder pressures of internal combustion engines.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Sign in / Sign up

Export Citation Format

Share Document