Detection of Abnormal Activity to Alert the Nearby Persons via M-DNN Based Surveillance System

2021 ◽  
Vol 16 ◽  
pp. 668-685
Author(s):  
Shankargoud Patil ◽  
Kappargaon S. Prabhushetty

In today's environment, video surveillance is critical. When artificial intelligence, machine learning, and deep learning were introduced into the system, the technology had progressed much too far. Different methods are in place using the above combinations to help distinguish various wary activities from the live tracking of footages. Human behavior is the most unpredictable, and determining whether it is suspicious or normal is quite tough. In a theoretical setting, a deep learning approach is utilized to detect suspicious or normal behavior and sends an alarm to the nearby people if suspicious activity is predicted. In this paper, data fusion technique is used for feature extraction which gives an accurate outcome. Moreover, the classes are classified by the well effective machine learning approach of modified deep neural network (M-DNN), that predicts the classes very well. The proposed method gains 95% accuracy, as well the advanced system is contrast with previous methods like artificial neural network (ANN), random forest (RF) and support vector machine (SVM). This approach is well fitted for dynamic and static conditions.

2020 ◽  
Vol 34 (5) ◽  
pp. 601-606
Author(s):  
Tulasi Krishna Sajja ◽  
Hemantha Kumar Kalluri

Heart disease is a very deadly disease. Worldwide, the majority of people are suffering from this problem. Many Machine Learning (ML) approaches are not sufficient to forecast the disease caused by the virus. Therefore, there is a need for one system that predicts disease efficiently. The Deep Learning approach predicts the disease caused by the blocked heart. This paper proposes a Convolutional Neural Network (CNN) to predict the disease at an early stage. This paper focuses on a comparison between the traditional approaches such as Logistic Regression, K-Nearest Neighbors (KNN), Naïve Bayes (NB), Support Vector Machine (SVM), Neural Networks (NN), and the proposed prediction model of CNN. The UCI machine learning repository dataset for experimentation and Cardiovascular Disease (CVD) predictions with 94% accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1694
Author(s):  
Mathew Ashik ◽  
A. Jyothish ◽  
S. Anandaram ◽  
P. Vinod ◽  
Francesco Mercaldo ◽  
...  

Malware is one of the most significant threats in today’s computing world since the number of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention methods are increasingly becoming necessary for computer systems connected to the Internet. This software exploits the system’s vulnerabilities to steal valuable information without the user’s knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-malware products use signatures for detecting known malware. However, the signature-based method does not scale in detecting obfuscated and packed malware. Considering that the cause of a problem is often best understood by studying the structural aspects of a program like the mnemonics, instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted on four datasets using machine learning and deep learning approaches such as Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and we observed promising results using APIs and system calls. On combining APIs/system calls with static features, a marginal performance improvement was attained comparing models trained only on dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2328 ◽  
Author(s):  
Md Shafiullah ◽  
M. Abido ◽  
Taher Abdel-Fattah

Precise information of fault location plays a vital role in expediting the restoration process, after being subjected to any kind of fault in power distribution grids. This paper proposed the Stockwell transform (ST) based optimized machine learning approach, to locate the faults and to identify the faulty sections in the distribution grids. This research employed the ST to extract useful features from the recorded three-phase current signals and fetches them as inputs to different machine learning tools (MLT), including the multilayer perceptron neural networks (MLP-NN), support vector machines (SVM), and extreme learning machines (ELM). The proposed approach employed the constriction-factor particle swarm optimization (CF-PSO) technique, to optimize the parameters of the SVM and ELM for their better generalization performance. Hence, it compared the obtained results of the test datasets in terms of the selected statistical performance indices, including the root mean squared error (RMSE), mean absolute percentage error (MAPE), percent bias (PBIAS), RMSE-observations to standard deviation ratio (RSR), coefficient of determination (R2), Willmott’s index of agreement (WIA), and Nash–Sutcliffe model efficiency coefficient (NSEC) to confirm the effectiveness of the developed fault location scheme. The satisfactory values of the statistical performance indices, indicated the superiority of the optimized machine learning tools over the non-optimized tools in locating faults. In addition, this research confirmed the efficacy of the faulty section identification scheme based on overall accuracy. Furthermore, the presented results validated the robustness of the developed approach against the measurement noise and uncertainties associated with pre-fault loading condition, fault resistance, and inception angle.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Author(s):  
Mokhtar Al-Suhaiqi ◽  
Muneer A. S. Hazaa ◽  
Mohammed Albared

Due to rapid growth of research articles in various languages, cross-lingual plagiarism detection problem has received increasing interest in recent years. Cross-lingual plagiarism detection is more challenging task than monolingual plagiarism detection. This paper addresses the problem of cross-lingual plagiarism detection (CLPD) by proposing a method that combines keyphrases extraction, monolingual detection methods and machine learning approach. The research methodology used in this study has facilitated to accomplish the objectives in terms of designing, developing, and implementing an efficient Arabic – English cross lingual plagiarism detection. This paper empirically evaluates five different monolingual plagiarism detection methods namely i)N-Grams Similarity, ii)Longest Common Subsequence, iii)Dice Coefficient, iv)Fingerprint based Jaccard Similarity  and v) Fingerprint based Containment Similarity. In addition, three machine learning approaches namely i) naïve Bayes, ii) Support Vector Machine, and iii) linear logistic regression classifiers are used for Arabic-English Cross-language plagiarism detection. Several experiments are conducted to evaluate the performance of the key phrases extraction methods. In addition, Several experiments to investigate the performance of machine learning techniques to find the best method for Arabic-English Cross-language plagiarism detection. According to the experiments of Arabic-English Cross-language plagiarism detection, the highest result was obtained using SVM   classifier with 92% f-measure. In addition, the highest results were obtained by all classifiers are achieved, when most of the monolingual plagiarism detection methods are used. 


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


2020 ◽  
Vol 10 (16) ◽  
pp. 5673 ◽  
Author(s):  
Daniela Cardone ◽  
David Perpetuini ◽  
Chiara Filippini ◽  
Edoardo Spadolini ◽  
Lorenza Mancini ◽  
...  

Traffic accidents determine a large number of injuries, sometimes fatal, every year. Among other factors affecting a driver’s performance, an important role is played by stress which can decrease decision-making capabilities and situational awareness. In this perspective, it would be beneficial to develop a non-invasive driver stress monitoring system able to recognize the driver’s altered state. In this study, a contactless procedure for drivers’ stress state assessment by means of thermal infrared imaging was investigated. Thermal imaging was acquired during an experiment on a driving simulator, and thermal features of stress were investigated with comparison to a gold-standard metric (i.e., the stress index, SI) extracted from contact electrocardiography (ECG). A data-driven multivariate machine learning approach based on a non-linear support vector regression (SVR) was employed to estimate the SI through thermal features extracted from facial regions of interest (i.e., nose tip, nostrils, glabella). The predicted SI showed a good correlation with the real SI (r = 0.61, p = ~0). A two-level classification of the stress state (STRESS, SI ≥ 150, versus NO STRESS, SI < 150) was then performed based on the predicted SI. The ROC analysis showed a good classification performance with an AUC of 0.80, a sensitivity of 77%, and a specificity of 78%.


Sign in / Sign up

Export Citation Format

Share Document