scholarly journals 5G system throughput performance evaluation using Massive-MIMO technology with Cluster Delay Line channel model and non-line of sight scenarios

2021 ◽  
Vol 13 (2) ◽  
pp. 40-45
Author(s):  
John Baghous

The fourth-generation system for mobile cellular communications (4G) has achieved great developments. The main problem here is that, with the passage of time and technical development, the need for new applications and services has emerged, and thus we need a new system that supports these matters in addition to the problems and limitations. One of the main challenges that the 4G system suffers from is the ability to support a larger number of devices, low latency, working in real time, provide greater capacity, in addition to providing a high data rate (bit rate) – hence 4G stands unable to support many new applications. This is what made researchers aspire to overcome these problems or reduce their impact to the maximum extent and this is what we expect to achieve in the new generation (5G). In this research, a presentation was made of the 5G system regarding with one of its most important techniques (Massive MIMO technology), clarification of some concepts related to the study such as throughput and NLOS (Non-Line of Sight), as well as the channel model used. The results of the experiments were presented with the discussion.

Author(s):  
Hằng

Trong bài báo này, giải pháp hiệu quả cải thiện độ chính xác của định vị trong nhà, dựa trên góc tới AOA( Angle Of Arrival) kết hợp với bộ lọc Kalman đã được đề xuất. Giải pháp này có thể cải thiện độ chính xác cho bài toán định vị nguồn phát trong môi trường trong nhà so với phương pháp AOA truyền thống. Hai kịch bản được tạo ra để kiểm tra hiệu suất của giải pháp đề xuất. Kịch bản thứ nhất môi trường truyền dẫn tồn tại đường LOS ( Line Of Sight) và NLOS, kịch bản thứ hai môi trường truyền dẫn chỉ tồn tại các đường NLOS(Non - Line Of Sight) do các đường LOS bị suy giảm. Kết quả mô phỏng cho thấy, giải pháp đề xuất đạt được độ chính xác cao hơn so với phương pháp AOA truyền thống. Đặc biệt, khi sai số định vị dưới 2m và môi trường chỉ có NLOS, thuật toán đề xuất đạt độ chính xác cao hơn 20% so với thuật toán AOA truyền thống.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4593
Author(s):  
Haejoon Jung ◽  
In-Ho Lee

Due to their high mobility, unmanned aerial vehicles (UAVs) can offer better connectivity by complement or replace with the existing terrestrial base stations (BSs) in the mobile cellular networks. In particular, introducing UAV and millimeter wave (mmWave) technologies can better support the future wireless networks with requirements of high data rate, low latency, and seamless connectivity. However, it is widely known that mmWave signals are susceptible to blockages because of their poor diffraction. In this context, we consider macro-diversity achieved by the multiple UAV BSs, which are randomly distributed in a spherical swarm. Using the widely used channel model incorporated with the distance-based random blockage effects, which is proposed based on stochastic geometry and random shape theory, we investigate the outage performance of the mmWave UAV swarm network. Further, based on our analysis, we show how to minimize the outage rate by adjusting various system parameters such as the size of the UAV swarm relative to the distance to the receiver.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Gang Liu ◽  
Ming Zhang ◽  
Yaming Bo

The actions of a person holding a mobile device are not a static state but can be considered as a stochastic process since users can change the way they hold the device very frequently in a short time. The change in antenna inclination angles with the random actions will result in varied received signal intensity. However, very few studies and conventional channel models have been performed to capture the features. In this paper, the relationships between the statistical characteristics of the electric field and the antenna inclination angles are investigated and modeled based on a three-dimensional (3D) fast ray-tracing method considering both the diffraction and reflections, and the radiation patterns of an antenna with arbitrary inclination angles are deducted and included in the method. Two different conditions of the line-of-sight (LOS) and non-line-of-sight (NLOS) in the indoor environment are discussed. Furthermore, based on the statistical analysis, a semiempirical probability density function of antenna inclination angles is presented. Finally, a novel statistical channel model for stochastic antenna inclination angles is proposed, and the ergodic channel capacity is analyzed.


Author(s):  
Kanchana Devi A ◽  
Bhuvaneswari B

Massive MIMO is a advance of MIMO technology. M-MIMO use hundreds of Base station (BS) to simultaneously serve multiple users. It combines with millimeter wave (mmWave) to provide huge spectral efficient, high reliability and high energy efficiency. Massive MIMO gives huge antennas, high signal strength, less noise reduction and also using better channel model. This paper discusses the detail description of fifth generation (5G) network architecture and to improve massive MIMO in existing technology.


Massive MIMO Technology showed its unique characteristics and capabilities for future wireless communications where high data transmission rates are desired for fast growing 5G applications. High data transmission rates need more number of antennas at base station which comprised of increased system complexity and hardware cost. A proven method for reducing number of RF (radio frequency) chains at base station is Transmit Antenna Selection algorithm. In this paper an effective approach for TAS and optimizing the number of antennas at base station for desired data rates have been proposed and a Tradeoff between SE (Spectral Efficiency), EE (energy Efficiency) are discussed. MVGSA (modified velocity Gravitational Search algorithm) discussed for optimization of Transmit Antennas along with Improved SE and EE other effective algorithms are compared with multi objectives and data transmission rates. MVGSA proved with Improved SE and EE with Effective TAS.


2017 ◽  
Vol 29 (21) ◽  
pp. 1907-1910 ◽  
Author(s):  
Heng Qin ◽  
Yong Zuo ◽  
Feiyu Li ◽  
Risheng Cong ◽  
Lingchao Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document