scholarly journals Emerging Roles of Wild-type and Mutant IDH1 in Growth, Metabolism and Therapeutics of Glioma

Gliomas ◽  
2021 ◽  
pp. 61-78
Author(s):  
Matthew Garrett ◽  
Yuki Fujii ◽  
Natsuki Osaka ◽  
Doshun Ito ◽  
Yoshihisa Hirota ◽  
...  
2018 ◽  
Vol 475 (20) ◽  
pp. 3221-3238 ◽  
Author(s):  
Diego Avellaneda Matteo ◽  
Grace A. Wells ◽  
Lucas A. Luna ◽  
Adam J. Grunseth ◽  
Olga Zagnitko ◽  
...  

Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q). Here, we identify a third type of reactivity, deficient αKG and high D2HG production (R132L). We show that R132Q IDH1 has unique structural features and distinct reactivities towards mutant IDH1 inhibitors. Biochemical and cell-based assays demonstrate that while most tumor-relevant mutations were effectively inhibited by mutant IDH1 inhibitors, R132Q IDH1 had up to a 16 300-fold increase in IC50 versus R132H IDH1. Only compounds that inhibited wild-type (WT) IDH1 were effective against R132Q. This suggests that patients with a R132Q mutation may have a poor response to mutant IDH1 therapies. Molecular dynamics simulations revealed that near the NADP+/NADPH-binding site in R132Q IDH1, a pair of α-helices switches between conformations that are more wild-type-like or more mutant-like, highlighting mechanisms for preserved WT activity. Dihedral angle changes in the dimer interface and buried surface area charges highlight possible mechanisms for loss of inhibitor affinity against R132Q. This work provides a platform for predicting a patient's therapeutic response and identifies a potential resistance mutation that may arise upon treatment with mutant IDH inhibitors.


2017 ◽  
Vol 114 (40) ◽  
pp. 10743-10748 ◽  
Author(s):  
Tali Mazor ◽  
Charles Chesnelong ◽  
Aleksandr Pankov ◽  
Llewellyn E. Jalbert ◽  
Chibo Hong ◽  
...  

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


2020 ◽  
Vol 51 (1) ◽  
pp. 45-53
Author(s):  
Yusuke Tabei ◽  
Keiichi Kobayashi ◽  
Kuniaki Saito ◽  
Saki Shimizu ◽  
Kaori Suzuki ◽  
...  

Abstract Backgrounds Mutations in the isocitrate dehydrogenase (IDH)1 gene are favourable prognostic factors in newly diagnosed diffuse gliomas, whereas it remains controversial in the recurrent glioblastoma setting. Methods A total of 171 patients with newly diagnosed glioblastoma, either ‘primary’ glioblastoma or ‘secondary’ glioblastoma, treated at Kyorin University Hospital or Japanese Red Cross Medical Center from 2000 to 2015 were included. Patients with confirmed IDH1 status and O6-methylguanine-DNA methyltransferase promoter methylation status were retrospectively analysed for overall survival from the initial diagnosis (n = 147) and after the first progression (n = 122). Results IDH1 mutation but not IDH2 was noted in 19 of 147 patients with glioblastoma (12.9%). In patients with ‘primary’ glioblastoma (n = 136), median overall survival after the first progression was 13.5 and 10.5 months for mutant IDH1 and wild-type IDH1 glioblastoma, respectively (P = 0.747). Multivariate analysis revealed O6-methylguanine-DNA methyltransferase promoter methylation, and Karnofsky Performance status 60 or higher, were independent prognostic factors for better overall survival after the first progression. When ‘primary’ glioblastoma and ‘secondary’ glioblastoma were combined, median overall survival from the first progression was not significantly different between the mutant IDH1 group (10.1 months) and wild-type IDH1 group (10.5 months) (P = 0.559), whereas median overall survival from the initial diagnosis was significantly different (47.5 months vs.18.3 months, respectively; P = 0.035). Conclusions These results suggest that IDH1 mutation may not be a prognostic factor for survival at the first progression of patients with ‘primary’ glioblastoma and pretreated ‘secondary’ glioblastoma, and further warrant investigation in prospective studies.


2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v163.2-v163
Author(s):  
Shelli Kesler ◽  
Kyle Noll ◽  
Daniel Cahill ◽  
Ganesh Rao ◽  
Jeffrey Wefel

2021 ◽  
Vol 12 ◽  
Author(s):  
Dan Wang ◽  
Hong Li ◽  
Xiang Ma ◽  
Yanqiong Tang ◽  
Hongqian Tang ◽  
...  

Aeromonas veronii (A. veronii) is a zoonotic pathogen. It causes clinically a variety of diseases such as dysentery, bacteremia, and meningitis, and brings huge losses to aquaculture. A. veronii has been documented as a multiple antibiotic resistant bacterium. Hfq (host factor for RNA bacteriophage Qβ replication) participates in the regulations of the virulence, adhesion, and nitrogen fixation, effecting on the growth, metabolism synthesis and stress resistance in bacteria. The deletion of hfq gene in A. veronii showed more sensitivity to trimethoprim, accompanying by the upregulations of purine metabolic genes and downregulations of efflux pump genes by transcriptomic data analysis. Coherently, the complementation of efflux pump-related genes acrA and acrB recovered the trimethoprim resistance in Δhfq. Besides, the accumulations of adenosine and guanosine were increased in Δhfq in metabonomic data. The strain Δhfq conferred more sensitive to trimethoprim after appending 1 mM guanosine to M9 medium, while wild type was not altered. These results demonstrated that Hfq mediated trimethoprim resistance by elevating efflux pump expression and degrading adenosine, and guanosine metabolites. Collectively, Hfq is a potential target to tackle trimethoprim resistance in A. veronii infection.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3230
Author(s):  
Teresa Cejalvo ◽  
Ricardo Gargini ◽  
Berta Segura-Collar ◽  
Pablo Mata-Martínez ◽  
Beatriz Herranz ◽  
...  

Background: Gliomas remain refractory to all attempted treatments, including those using immune checkpoint inhibitors. The characterization of the tumor (immune) microenvironment has been recognized as an important challenge to explain this lack of response and to improve the therapy of glial tumors. Methods: We designed a prospective analysis of the immune cells of gliomas by flow cytometry. Tumors with or without isocitrate dehydrogenase 1/2 (IDH1/2) mutations were included in the study. The genetic profile and the presence of different molecular and cellular features of the gliomas were analyzed in parallel. The findings were validated in syngeneic mouse models. Results: We observed that few immune cells infiltrate mutant IDH1/2 gliomas whereas the immune content of IDH1/2 wild-type tumors was more heterogeneous. Some of them contained an important immune infiltrate, particularly enriched in myeloid cells with immunosuppressive features, but others were more similar to mutant IDH1/2 gliomas, with few immune cells and a less immunosuppressive profile. Notably, we observed a direct correlation between the percentage of leukocytes and the presence of vascular alterations, which were associated with a reduced expression of Tau, a microtubule-binding protein that controls the formation of tumor vessels in gliomas. Furthermore, overexpression of Tau was able to reduce the immune content in orthotopic allografts of GL261 cells, delaying tumor growth. Conclusions: We have confirmed the reduced infiltration of immune cells in IDH1/2 mutant gliomas. By contrast, in IDH1/2 wild-type gliomas, we have found a direct correlation between the presence of vascular alterations and the entrance of leukocytes into the tumors. Interestingly, high levels of Tau inversely correlated with the vascular and the immune content of gliomas. Altogether, our results could be exploited for the design of more successful clinical trials with immunomodulatory molecules.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 503-503
Author(s):  
Kathryn Gunn ◽  
Matti Myllykoski ◽  
John Cao ◽  
Bill Diplas ◽  
Hai Yan ◽  
...  

Abstract Gain-of-function mutations in isocitrate dehydrogenase enzymes IDH1 and IDH2 occur in ∼10% of acute myeloid leukemias (AML) and >80% of gliomas. The mutant enzymes convert 2-oxoglutarate (2OG) to the oncometabolite R-2-hydroxyglutarate (R-2HG). R-2HG promotes cellular transformation by modulating the activities of 2OG-dependent dioxygenases (2OGDDs). The only functionally validated direct target of R-2HG is TET2, a 2OGDD myeloid tumor suppressor that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Interestingly, in clonal myeloid disorders the patterns of IDH and TET2 mutations are vastly different. TET2 mutations occur at similar frequencies in clonal hematopoiesis of unknown significance (CHIP), lower- and higher-grade myeloproliferative (MPN) and myelodysplastic (MDS) disorders, and primary and secondary AML. IDH mutations, on the other hand, are associated with higher-grade and blast-phase MPN and MDS and with de novo AML and are rare in CHIP and low-grade MDS. This suggests that mutant IDH promotes a more aggressive disease phenotype and that R-2HG has additional targets other than TET2 that contribute to its leukemogenic activity. To ask if the in vitro transforming activity of R-2HG directly correlates with TET2 inhibition, we treated TF-1 cells, a cytokine-dependent human AML cell line, with a dose range of cell-permeable esterified R-2HG. We found that R-2HG induces cytokine independence at concentrations that have no effect on 5hmC levels. To identify other 2OGDD myeloid tumor suppressors that could be contributing to R-2HG-mediated transformation, we performed a positive-selection CRISPR-Cas9 screen under cytokine-poor conditions in TF-1 cells. We identified three H3K4 histone lysine demethylases, KDM5A, KDM5C and KDM5D, as genes whose sgRNAs were enriched upon cytokine withdrawal. Triple knockout of KDM5A, KDM5C and KDM5D (TKO) in TF-1 cells induces robust cytokine independence. Likewise, treatment of TF-1 cells with KDM5c70, a specific inhibitor of KDM5 enzymes, strongly induces TF-1 cytokine independence. Of note, KDM5 inhibition has no effect on TET2 expression or 5hmC levels. We further found that R-2HG is a more potent inhibitor of KDM5A, KDM5C and KDM5D than of TET2. We then assessed the effect of mutant IDH1 expression, TKO, R-2HG treatment and KDM5c70 treatment on H3K4 trimethylation by ChIP-seq and found that each of these perturbations results in a significant enrichment in H3K4me3 peaks relative to controls. TET enzymes are not recurrently mutated in glioma and although there is a strong correlation between mutant IDH status and the CpG island methylator phenotype (CIMP), direct inhibition of TET2 by R-2HG has not been reproducibly demonstrated in glioma. To ask if TET2 activity is suppressed in IDH mutant glioma, we quantified 5hmC levels in a panel of primary IDH wild-type and IDH mutant glioma and AML samples by mass spectrometry. We found that, unlike in AML, in glioma there is no correlation between IDH1 mutation status and loss of 5hmC. We likewise saw no correlation between 5hmC levels and either IDH mutation status or intracellular R-2HG levels in patient derived xenograft (PDX) models of glioma. Given the lack of evidence that TET enzymes are tumor suppressor targets of R-2HG in IDH mutant glioma, we asked if mutant IDH positivity is associated with increased levels of H3K4 methylation in glioma. We performed ChIP-seq on a panel of IDH wild-type and IDH mutant glioma PDX lines and found H3K4me peaks to be highly enriched in the IDH mutant lines when compared to IDH wild-type lines. Trimethyl-H3K4 levels were likewise increased in isogenic normal human astrocyte (NHA) cells ectopically expressing mutant IDH1. Collectively, these data suggest that R-2HG inhibits KDM5 histone lysine demethylases to promote mutant IDH-mediated transformation in AML and glioma. These studies identify a novel direct target of R-2HG in IDH mutant tumors and provide a functional link between IDH mutations and dysregulated histone lysine methylation in cancer. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi50-vi50
Author(s):  
Sasha Beyer ◽  
Erica H Bell ◽  
Joseph P McElroy ◽  
Oliver Oehkke ◽  
Jessica Fleming ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2413-2413
Author(s):  
Julie-Aurore Losman ◽  
Ryan E. Looper ◽  
William G. Kaelin

Abstract Abstract 2413 Somatic mutations in IDH1 and IDH2 are common in normal karyotype AML as well as in other clonal myeloid disorders and several solid tumors. Mutant IDH overproduces the R-enantiomer of 2-hydroxyglutarate, (R)-2HG (Dang, et al Nature 462: 739, 2009), which is hypothesized to alter the epigenetic landscape of cancer cells by inhibiting the activity of α-ketoglutarate-dependent enzymes, including the TET family of 5-methylcytosine hydroxylases and the jumonji-domain-containing family of histone demethylases. There is considerable interest in developing inhibitors of mutant IDH in the hope that, by decreasing (R)-2HG production in cancer cells, their epigenetic regulation can be restored. However, there is, to date, no evidence that transformation by mutant IDH is reversible or that inhibiting production of (R)-2HG has any effect on cancers harboring IDH mutations. Herein we report that in two different myeloid transformation assays, transformation by (R)-2HG and mutant IDH1 is reversible by removal of (R)-2HG. We previously reported that stable expression of a tumor-derived mutant IDH1 (IDH1R132H) induces growth factor independence and blocks EPO-induced differentiation in the human TF-1 erythroleukemia cell line, and that treatment of TF-1 cells with a cell-permeable form of (R)-2HG, TFMB-(R)-2HG, is sufficient to recapitulate this phenotype (Late Breaking Abstract #LBA-4, ASH 2011). We have extended these studies and found that transformation by TFMB-(R)-2HG is reversible and that this reversibility is influenced by the duration and intensity (dose) of (R)-2HG exposure. We developed a second myeloid transformation assay using a murine myeloid leukemia cell line that is transformed by expression of a HoxB8-ER fusion protein when cultured in the presence of estrogen. Upon estrogen withdrawal, the cells undergo monocytic differentiation and apoptosis. We expressed wild-type IDH1 or IDH1R132H in the cells and found that cells expressing wild-type IDH1 differentiate normally, but cells expressing IDH1R132H do not upregulate monocytic markers CD11b/Mac1 and Gr1 upon estrogen withdrawal. Furthermore, treatment of the IDH1R132H-expressing cells with an inhibitor of mutant IDH1 restores their ability to undergo monocytic differentiation upon estrogen withdrawal. Our findings suggest that continued exposure to (R)-2HG is required to maintain the cellular changes induced by mutant IDH, and further suggest that targeting (R)-2HG production may have therapeutic efficacy in the treatment of cancers harboring IDH mutations. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 13 (4) ◽  
pp. 100758 ◽  
Author(s):  
Chao Sun ◽  
Liming Xiao ◽  
Yuanlin Zhao ◽  
Jiankuan Shi ◽  
Yuan Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document