scholarly journals Utilization of Bioetanol Fermentation Waste Pineapple and Coconut Water as Disinfectants With Bacteria Saccharomyces Cerevisiae

2021 ◽  
Vol 1 (6) ◽  
pp. 423-436
Author(s):  
Rizka Lestari Dewi Rizka ◽  
Anggun Puspitarini Siswanto

Research analysis of sugar content and the effect of ethanol content on bioethanol from old coconut water and pineapple peel with the help of Saccharomyces Cerevisease bacteria. The condition of the spread of the Corona Virus or COVID-19 in Indonesia, thus making bioethanol produced from fermenting pineapple peel waste and old coconut water for disinfectant products to spray around homes and public places to reduce bacteria and viruses. The production of bioethanol is carried out by pre-treating coconut water and pineapple peel, the fermentation stage with Saccharomyces cerevisiae yeast and the distillation stage. The result of the highest bioethanol content was 32% with a mass of 5 g yeast with a time of 24 hours. The highest calorific value at 72 hours was 211.95 kcal/kg. The result of the highest specific gravity at 24 hours and the mass of yeast 4 g is 0.98 g/ml. Based on the bioethanol quality requirements, the bioethanol produced is not in accordance with the bioethanol quality requirements, this is due to the absence of nutrient decomposing bacteria so that it is less than optimal in converting glucose into bioethanol.

2021 ◽  
Vol 17 (2) ◽  
pp. 159
Author(s):  
Sefrinus Maria Dolfi Kolo ◽  
Jefry Presson ◽  
Pricilia Amfotis

<p>Rumput laut dengan kandungan karbohidrat dan lipid yang tinggi dianggap menjadi sumber energi terbarukan generasi ketiga. Penelitian ini bertujuan menentukan kadar gula pereduksi optimum, mengetahui tekstur permukaan serbuk sebelum dan sesudah hidrolisis serta menentukan kadar etanol hasil fermentasi. Kandungan karbohidrat rumput laut <em>Ulva reticulata</em> dapat dikonversi menjadi gula heksosa dan pentosa (glukosa, arabinosa, ramnosa, dan xilosa) melalui hidrolisis asam. Campuran gula optimum hasil proses hidrolisis kemudian dikonversi menjadi etanol menggunakan ragi <em>Saccharomyces cerevisiae</em>. Fermentasi dilakukan dengan konsentrasi inokulum 10% (v/v) selama 5 hari pada temperatur 30 °C dan pH 4,5. Analisis tekstur permukaan sampel dilakukan dengan <em>Scanning Electron Microscopy</em> (SEM). Analisis gula pereduksi dilakukan dengan metode DNS (Dinitro salisilat). Analisis etanol dilakukan dengan uji kualitatif dan kuantitatif menggunakan metode berat jenis dan kromatografi gas. Hasil penelitian menunjukkan bahwa kadar gula pereduksi meningkat seiring meningkatnya suhu hidrolisis pada suhu      75 °C ke 150 °C (2,3 – 23,7 g/L) dan mengalami penurunan kadar pada suhu 175 °C menjadi 17,1 g/L. Hasil analisis dengan variasi konsentrasi terhadap waktu 30, 40, 50, dan 60 menit terlihat bahwa kadar gula pereduksi meningkat seiring meningkatnya waktu hidrolisis dari 30 menit sampai 50 menit yakni 23,7 – 33,4 g/L dan mengalami penurunan pada waktu 60 menit yakni 19,2 g/L. Kadar gula pereduksi optimum sebesar 33,4 g/L  pada suhu 150 °C dengan konsentrasi asam 2 % pada waktu hidrolisis 50 menit. Tekstur permukaan serbuk sebelum dan sesudah hidrolisis mengalami perubahan yang signifikan. Hasil uji kualitatif etanol hasil fermentasi dibuktikan dengan adanya perubahan warna dari jingga menjadi biru. Hasil uji kadar etanol dengan metode berat jenis yakni sebesar 1% dan metode kromatografi gas sebesar 5,02%.</p><p> </p><p><strong>Bioethanol Production as Renewable Energy from <em>Ulva Reticulata</em> Seaweed from Timor Island. </strong>Seaweed with carbohydrate and lipid content is considered to be the third generation of renewable energy sources. The carbohydrate content of <em>Ulva reticulata</em> seaweed can be converted into hexose and pentose sugars (glucose, arabinose, ramnose, and xylose) through acid hydrolysis. The optimum sugar mixture resulting from the hydrolysis process is then converted to ethanol using <em>Saccharomyces cerevisiae</em> yeast. Fermentation was carried out with an inoculum concentration of 10% (v/v) for five days at a temperature of 30 °C and a pH of 4.5. Analysis of the surface texture of the sample was carried out by <em>Scanning Electron Microscopy</em> (SEM). Reducing sugar analysis was performed using the DNS (Dinitrosalicylate) method. Ethanol analysis was carried out by qualitative and quantitative tests using specific gravity and gas chromatography methods. The results showed that the reducing sugar content increased with increasing hydrolysis temperature at 75 °C to 150 °C (2.3 – 23.7 g/L) and decreased levels at 175 °C to 17.1 g/L. The results of the analysis with various concentrations of 30, 40, 50, and 60 minutes showed that reducing sugar levels increased with increasing hydrolysis time from 30 minutes to 50 minutes, namely 23.7 – 33.4 g/L and decreased at 60 minutes, namely 19.2 g/L. The optimum reducing sugar content was 33.4 g/L at 150 °C with an acid concentration of 2% at 50 minutes of hydrolysis. Powder surface texture before and after hydrolysis experienced significant changes. The qualitative test results of fermented ethanol are evidenced by a change in color from orange to blue. The results of the ethanol content test using the specific gravity method were 1%, and that using the gas chromatography method was 5.02%.</p>


2014 ◽  
Vol 14 (64) ◽  
pp. 9104-9116
Author(s):  
FD Nzabuheraheza ◽  
◽  
AN Nyiramugwera ◽  

An attempt to produce yellow/golden wine was done in the laboratory using a mixture of fruits (3 3.3% each) as golden must extracted from Passiflora edulis (passion fruit ), Mangifera indica (mango) and Ananas comosus (pineapple ). After extraction of three juices, physic al and chemical parameters were determined before and during fermentation of the must. These parameters were: wild yeast colony forming units per milliliter (CFU/ml) of fermenting must, total soluble solids (degrees Brix) , pH, alcohol content, titratable acidity in percent , fermentation temperature, sugar content (g/l) , and specific gravity. The fermentation of a mixture of juices was done at room temperature, i.e., at 22 o C, and the wild yeast used was Saccharomyces cerevisiae , a strain called “musanzeensis” isolated from local traditional banana wine. During substantial must fermentation, the pH decreased from 5.5 for fresh juice to 3.2 for wine, total soluble solids from 20 o Brix to 2 o Brix, titratable acidity increased from 0.68% to 1.4%, sugar content decreased from 85 g/l to 32 g/l, specific gravity decreased from 1.040 to 1.002, yeast growth increased from 3 to 18 log CFU/ml, and alcohol content increased from 0.0 to 12% alcohol by volume. After twelve days of fermentation, the color of wine remained yellow, the flavor was enhanced, sweetness diminished and the acidity (sourness) increased slightly. These chemical changes could be due to the Saccharomyces cerevisiae activity , which was characterized by a remarkable foam and intensive production of carbon dioxide in the fermenting wine . The mixture of the three juices from Passiflora edulis, Mangifera indica and Ananas comosus produced an alcoholic beverage with a wonderful flavor that was generally delicious and acceptable to 40 trained and blind panelists during sensory evaluation using as 9 –point Hedonic scale. Each panelist sipped once 100ml of sample taken from wine. Thus, the obtained yellow wine should be promoted for adding value to local fruits, imported wine reduction, job creation, income generation and rural development.


2020 ◽  
Vol 5 (2) ◽  
pp. 41-55
Author(s):  
C. F Anyaegbu ◽  
O.J. Oledibe ◽  
J.E. Amadi

Introduction: Wine is an alcoholic drink made from fermented grapes. The process of wine making involves fermentation of fruits in which case the wine is qualified by the fruit which it is made from such as apple wine, orange wine.Purpose of the Study: This research shows the possibility of producing wine from fruits using bakers’ yeast (Saccharomyces cerevisiae).Methodology: The fruits used were Apple (Malus domestica), Orange (Citrus sinensis), and Pineapple (Ananas  cosmosus).They were washed and blended. The strained juices were poured into plastic bottles to cool for 15mins before additives and yeast were added. The “must” was then allowed to ferment for four days. After four days, racking was done to remove sediments. Then egg white was added as a clarifying agent, and left to stand fifty days, for it to age and then bottled.Findings: Apple wine was found to be more alcoholic (11.4%) while orange wine had 8.9%. Apple had the highest pH (4.0) while orange had 2.0. The solubility test showed that apple had the highest solubility with 98% while orange had 94%. Apple had the least sugar content with 9.90ml while pineapple had22.0ml. Orange had a specific gravity of 0.99g while apple had0.98g.Recommendation:  It is observed that all the fruits in the market today can give the qualities needed for alcoholic wine in the absence of grape fruit. All these satisfactory qualities of this study show that an acceptable wine from pineapple, apple and orange can be locally produced.


2021 ◽  
Vol 37 (2) ◽  
pp. 144-151
Author(s):  
M.R Adedayo ◽  
A.E Ajiboye ◽  
O.A Yahaya

Lignocellulose wastes are the most abundant residues on the surface of the earth. This project studies the possibility of ethanol production from a forestry waste. Wood wastes from Gmelina arborea were treated with dillute sulfuric acid to break down the lignin component. Fermentation for ethanol production was done using baker’s yeast (Saccharomyces cerevisiae ATCC 204508/S288c) for 120 hours using submerged fermentation, and the pH, reducing sugar, specific gravity and lignin content were determined using standard techniques. Ethanol concentration and yield were measured via vinometer and ethanol standard curve techniques. From the results, the highest pH was obtained at 72 hours of the fermentation period. The reducing sugar content and specific gravity decreased over the fermentation time . The acid-pretreated wood wastes gave a maximum ethanol concentration of 3.84 % and a yield of 7.60 ml/g as measured from the vinometer and ethanol standard curve methods at 72 and 96 hours of fermentation, respectively. About 13.6% v/v of ethanol was recovered from the distillation process employed to separate the components of the product generated after fermentation. The observations in this research reveal the possibility of producing ethanol from G. arborea wood wastes and under optimized culture conditions. This could serve as an alternate means of biofuel generation and hence value addition to the wastes. Keywords: Gmelina arborea, Saccharomyces cerevisiae, Ethanol, Submerged fermentation


1976 ◽  
Vol 56 (4) ◽  
pp. 805-809 ◽  
Author(s):  
V. M. BENDELOW

A procedure that provides information on the suitability of barley for malting and, brewing purposes is described. Three parameters are measured: mash filtration rate, wort viscosity and wort-reducing sugar content, as maltose. Maltose is determined by an auto-analyzer method and this is a satisfactory alternative to the specific gravity procedure for the estimation of percent extract. The addition of these criteria to those already in use enables more discriminatory selection at early generations of barley-breeding programs. The technique requires only one sample extraction and 18 g of laboratory malt.


FLORESTA ◽  
2014 ◽  
Vol 45 (1) ◽  
pp. 57 ◽  
Author(s):  
Daniela Letícia Nones ◽  
Martha Andreia Brand ◽  
Alexsandro Bayestorff Da Cunha ◽  
Adriel Furtado De Carvalho ◽  
Solange Maria Krug Weise

Este trabalho teve como objetivo caracterizar energeticamente a madeira e o carvão vegetal obtidos a partir da espécie Eucalyptus benthamii Maiden & Cambage para duas diferentes idades, 5 e 13 anos. Para a madeira de cada idade, foram confeccionados 48 corpos de prova, com aproximadamente 2 x 2 x 2 cm, que foram utilizados para determinação da massa específica, poder calorífico superior, análise química imediata e carbonização. Após a carbonização, as propriedades energéticas do carvão vegetal foram avaliadas a partir da massa específica aparente, rendimento gravimétrico e volumétrico, poder calorífico superior e análise química imediata. Tanto para a madeira quanto para o carvão vegetal houve influência da idade. A madeira com 13 anos apresentou maior massa específica básica e maior poder calorífico. Porém as diferenças nas propriedades físicas e energéticas da madeira das duas idades não justificam a manutenção da floresta até os 13 anos de idade, quando seu uso final é a geração de energia na forma de carvão. Em relação ao carvão, aquele produzido com madeira de 13 anos apresentou maior rendimento, enquanto o carvão vegetal de 5 anos apresentou melhor qualidade final para uso energético.Palavras-chave: Energia de biomassa; propriedades energéticas; eucalipto. AbstractDetermination of energetic properties of wood and charcoal produced from Eucalyptus benthamii. This research aimed to characterize the energetic properties of wood and charcoal obtained from Eucalyptus benthamii for two different ages, 5 and 13 years. For each timber age, we prepared 48 specimens, approximately 2 x 2 x 2 cm, used to determine specific gravity, calorific value, immediate analysis and carbonization. After carbonization, we evaluated the energetic properties of the charcoal in relation to density, gravimetric and volumetric yield, calorific value and immediate chemical analysis. As the wood as charcoal were influenced by age. The 13 years old timber revealed higher specific gravity and higher calorific value. However, the differences in the physical and energetic properties of the wood of the two ages do not justify maintaining the forest until the age of 13, as its end use is generation of energy as coal. The charcoal produced from 13 years old trees had the highest yield, while the charcoal from 5 years old trees had better quality to energy usage.Keywords: Biomass energy; energy properties; Eucalyptus.


2019 ◽  
Vol 31 (12) ◽  
pp. 2885-2890
Author(s):  
Pallavi S. Patil ◽  
Umesh B. Deshannavar

In the present study, four Saccharomyces cerevisiae strains S. cerevisiae (NCIM 3200), S. cerevisiae (NCIM 3045), S. cerevisiae (baker′s yeast) and S. cerevisiae (EC1118) have been used and compared for their capability to ferment sugars from the juice of sugarcane (of variety CO 86032) for production of sugarcane wine. The growth pattern of each strain was studied followed by the fermentation at optimized conditions such as pH and temperature. The strains′ potential to produce sugarcane wine has been compared in terms of their sugar consumption, alcohol production, titrable acidity and volatile acidity production with respect to permissible amounts given by Indian Regulations. Saccharomyces cerevisiae (EC1118) performed better in fermentation among other compared Saccharomyces strains at the optimum temperature of 28 ºC, optimum pH 5, total soluble solids of 18 ºBrix and total sugar content of 185 g/L. Analysis of sugarcane wine fermented by Saccharomyces cerevisiae (EC1118) has pH, 3.57, total alcohol content, 13.55 ± 1.77 %, titrable acidity, 8.30 ± 0.01 g/L and volatile acidity, 0.84 ± 0.00 g/L. The overall acceptability from sensory analysis supports the above physico-chemical analysis results of sugarcane wine.


2019 ◽  
Vol 7 (11) ◽  
pp. 492 ◽  
Author(s):  
Nadine Feghali ◽  
Warren Albertin ◽  
Edouard Tabet ◽  
Ziad Rizk ◽  
Angela Bianco ◽  
...  

The study of yeast biodiversity represents an important step in the preservation of the local heritage, and this work in particular has an innovative character since no further studies have investigated ‘Merwah’, one of the main grape varieties used in winemaking in Lebanon. To gain deeper knowledge of the genetic diversity and population structure of native Saccharomyces cerevisiae wine strains, 202 isolates were collected during spontaneous alcoholic fermentation of eight must/wine samples of cultivar ‘Merwah’, over two consecutive years (2016, 2017) in a traditional winery in Mount Lebanon (1400 m a.s.l.). The isolates were identified as S. cerevisiae on the basis of their morphology and preliminary sequence analysis of their internal transcribed spacer (ITS) PCR. They were then characterised at the strain level by interdelta PCR and genotyped using multiplex PCR reactions of 12 microsatellite markers. High genetic diversity was observed for the studied population. To select potential yeast starter strains from this population, micro-fermentations were carried out for 22 S. cerevisiae strains that were selected as representative of the ‘Merwah’ wine yeast population in order to determine their technological and oenological properties. Three indigenous yeast strains might represent candidates for pilot-scale fermentation in the winery, based on relevant features such as high fermentation vigour, low production of volatile acidity and H2S and low residual sugar content at the end of alcoholic fermentation.


2011 ◽  
Vol 347-353 ◽  
pp. 2541-2544
Author(s):  
Benjarat Laobussararak ◽  
Warawut Chulalaksananukul ◽  
Orathai Chavalparit

This study was to investigate the fermentation of rice straw using various microorganisms, i.e., the bacterium Zymomonas mobilis, a distillery yeast Saccharomyces cerevisiae and a co-culture of Zymomonas mobilis and Saccharomyces cerevisiae. Rice straw was pretreated with alkaline and followed by enzymatic hydrolysis using cellulase before fermentation by the bacterium and a distillery yeast. Results show that alkali pretreatment is appropriate for rice straw since this pretreatment condition can produce the maximum cellulose of 88.96% and reducing sugar content of 9.18 g/l. Furthermore, the ethanol yield after enzymatic hydrolysis (expressed as % theoretical yield) was 15.94-19.73% for the bacterium, 20.48-35.70% for yeast and 21.56-29.89% for co-culture. Therefore, the distillery yeast was a suitable microorganism for ethanol production from rice straw.


2014 ◽  
Vol 875-877 ◽  
pp. 242-245
Author(s):  
Jutarut Pornpunyapat ◽  
Wilaiwan Chotigeat ◽  
Pakamas Chetpattananondh

Bioethanol is widely used as renewable resource due to its safe to produce and environmentally friendly. However, knowledge on ethanol production from pineapple peel juice (Pattawia spp) is far from sufficient. In this work, pineapple peel juice (initial pH at 5) was fermented at various yeast contents (1, 3 and 5% by wt.) and fermentation times (3, 5 and 7 days) in order to investigate ethanol production characteristics. Yeast, Sacchromyces cerevisiae was grown on pineapple peel juice. The squeezed juice contained 11% of total sugar and 5% of reducing sugar. The results indicated that the optimum ethanol production was yeast contents of 5% by wt. and fermentation times of 5 days which gave the ethanol production of 9.08g/l. The ethanol at a higher yeast content also had a higher ethanol concentration.


Sign in / Sign up

Export Citation Format

Share Document