Solute mass transport and atmospheric drying of high-density gold tailings

Author(s):  
Adedeji Dunmola ◽  
Paul Simms
Author(s):  
Chunguang Xia ◽  
Nicholas Fang

One of the obstacles of culturing functioning vital tissues in vitro is to obtain a substantial biomass at a physiological cell density (>108cells/cm3). At this high density, the diffusion length of metabolites is limited to ~100um. As a matter of fact, in real tissue, almost all the cells are located within 100um distance from the capillaries [1]. Studies [2, 3] also confirmed that the cells in the artificial tissue cannot be properly cultured when they are further than 400um from the external nutrient source. Therefore, to culture three dimensional artificial tissue with substantial biomass, vascularization is necessary to enhance the metabolites transport. The short diffusion length of the metabolites requires high capillary density (>100/mm2) in vascularization. To meet this need, we have developed a novel high resolution and high speed 3D microfabrication technique, the projection microstereolithography[4] to explore microcirculatory networks with high density (>150/mm2). Using this technology we designed and fabricated the microreactors as shown in Figure 1. In our samples, 800um PEG microcapillaries with 20um inner radius and 40um outer radius with pitch of 96um are fabricated. Two rings as inlet and outlet are connected to external supply of culture medium. We designed the parameters of the vascularized microbioreactor based on the simulations of oxygen and carbon dioxide transport and metabolism in hepatocytes. As shown in Figure 2, the capillaries are arranged in a hexagonal way. According to the geometric symmetry, the final simulation domain is divided into 2 regions, the polymer capillary wall and the tissue. We assumed that a culture media with dissolved oxygen is pumped through the capillaries at 1.5mm/s rate and diffuses through the capillary wall, into the hepatocytes. The consumption of oxygen follows Michaelis-Menten kinetics [5, 6] and the metabolic rate of carbon dioxide is assumed to be proportional to that of oxygen by a fixed quotient (-0.81) which is addressed and studied by other groups [7]. The carbon dioxide diffuses into the capillaries and can be carried away through the flow of the culture medium. Our simulation indicates that the bottleneck of effective oxygen transport is the permeability of the polymer materials. The oxygen concentration drops off about 90% after diffusing through the capillary wall. It is predicted that the diffusion length at the inlet is 74um and 48um at the outlet; the rapid drop of carbon dioxide concentration also happens across the capillary wall. The predicted carbon dioxide concentration in the tissue is ~80nmol/cm3; this value is much smaller than the toxic value (100mmHg or 3umol/cm3) reported by David Gray and coworkers [8]. In Figure 2, we present the effect of the permeability of the capillary polymer materials on the diffusion length of oxygen and the concentration of carbon dioxide in the tissue. Our study indicates the existence of an optimal permeability for the capillary network, at which the overall diffusion length of oxygen is maximized. Interestingly, we also found a maximum concentration of carbon dioxide in the cultured tissue as the permeability of the polymer material changes. We attribute it to the competition between the tissue thickness and the permeability. Higher permeability increases the cultured tissue thickness, and also increases the ability of capillary to empty carbon dioxide. Not only is this model applicable for oxygen and carbon dioxide, but also for the transport of other metabolites. As an ongoing experimental effort, our fluorescent microscopy measurement validated the diffusion transport of fluorescent species from the capillary (Figure 3). Experiments are also in progress on the oxygen diffusion from the capillaries will cell cultures of high density on the PEG scaffold by introducing proper indicators. In summary, we have established a method to design and manufacture vascularized microcirculatory network to enhance the mass transport during the tissue culture. To ensure the effective nutrient delivery and wastes removal, our numerical simulation also confirms that it is essential to embed high density microcapillaries with optimal permeability.


2012 ◽  
Vol 149 (4) ◽  
pp. 743-749 ◽  
Author(s):  
NICOLAS OLIVIER ◽  
GILLES DROMART ◽  
NICOLAS COLTICE ◽  
NICOLAS FLAMENT ◽  
PATRICE REY ◽  
...  

AbstractThe 3.46 Ga Marble Bar Chert Member of the East Pilbara Craton, Western Australia, is one of the earliest and best-preserved sedimentary successions on Earth. Here, we interpret the finely laminated thin-bedded cherts, mixed conglomeratic beds, chert breccia beds and chert folded beds of the Marble Bar Chert Member as the product of low-density turbidity currents, high-density turbidity currents, mass transport complexes and slumps, respectively. Integrated into a channel-levee depositional model, the Marble Bar Chert Member constitutes the oldest documented deep-sea fan on Earth, with thin-bedded cherts, breccia beds and slumps composing the outer levee facies tracts, and scours and conglomeratic beds representing the channel systems.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Author(s):  
S. McKernan ◽  
C. B. Carter ◽  
D. Bour ◽  
J. R. Shealy

The growth of ternary III-V semiconductors by organo-metallic vapor phase epitaxy (OMVPE) is widely practiced. It has been generally assumed that the resulting structure is the same as that of the corresponding binary semiconductors, but with the two different cation or anion species randomly distributed on their appropriate sublattice sites. Recently several different ternary semiconductors including AlxGa1-xAs, Gaxln-1-xAs and Gaxln1-xP1-6 have been observed in ordered states. A common feature of these ordered compounds is that they contain a relatively high density of defects. This is evident in electron diffraction patterns from these materials where streaks, which are typically parallel to the growth direction, are associated with the extra reflections arising from the ordering. However, where the (Ga,ln)P epilayer is reasonably well ordered the streaking is extremely faint, and the intensity of the ordered spot at 1/2(111) is much greater than that at 1/2(111). In these cases it is possible to image relatively clearly many of the defects found in the ordered structure.


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document