Accelerating flows of pseudo-plastic and dilatant non-newtonian fluids in straight pipelines

2020 ◽  
pp. 57-61
Author(s):  
A.I. Nedolujko ◽  
A.A. Kotesova

The accelerated flows of non-Newtonian fluids are studied, the viscosity-strength properties of which are described by the equation τ = kΥn. Dependencies are obtained for calculating the velocity field and the time it takes to reach the stationary flow for liquids with arbitrary rheological parameters. Keywords technical fluid, non-Newtonian medium, rheology, viscometer, model, acceleration flow, pipeline. [email protected]

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Jamil

The velocity field and the adequate shear stress corresponding to the first problem of Stokes for generalized Burgers’ fluids are determined in simple forms by means of integral transforms. The solutions that have been obtained, presented as a sum of steady and transient solutions, satisfy all imposed initial and boundary conditions. They can be easily reduced to the similar solutions for Burgers, Oldroyd-B, Maxwell, and second-grade and Newtonian fluids. Furthermore, as a check of our calculi, for small values of the corresponding material parameters, their diagrams are almost identical to those corresponding to the known solutions for Newtonian and Oldroyd-B fluids. Finally, the influence of the rheological parameters on the fluid motions, as well as a comparison between models, is graphically illustrated. The non-Newtonian effects disappear in time, and the required time to reach steady-state is the lowest for Newtonian fluids.


2019 ◽  
Vol 18 (1) ◽  
pp. 85
Author(s):  
J. F. Bueno ◽  
A. R. S. Silva ◽  
T. A. Hirt ◽  
G. F. C. Bogo ◽  
F. S. F. Zinani ◽  
...  

The present work investigates the Construtal Design of fins inserted in cavities submitted to mixed convection by non-Newtonian fluids. The objective is to obtain the optimum aspect ratio for the fin considering different flow conditions and variations in the rheological parameters of the fluid. The phenomena of flow and heat transfer are modeled by mass balance, momentum and energy equations, and by the generalized Newtonian liquid constitutive equation. The viscosity is modeled as that of a pseudoplastic fluid, using the Carreau function. The optimization problem consists in maximizing heat transfer from the fin using the average Nusselt number. The investigated project variable is the aspect ratio between the edges of the rectangular plane fin profile. The restrictions are the volume of the cavity and the fin. The results are obtained numerically using a finite volume code and a two-dimensional geometry, through exhaustive searching. The results show that the fin geometry influences the maximum Nusselt number mainly for the cases with high Reynolds and Rayleigh numbers, such as was shown in previous studies. The results show that the fin geometry influences the maximum Nusselt number mainly for the cases with high Reynolds and Rayleigh numbers, as was shown in previous studies. It was also found that the Nusselt number increases as the increase in flow intensity, represented by the parameter p, and that the result of the maximum Nusselt number does not change monotonically with the non-Newtonian dimensionless viscosity and with the flow index, showing that the pseudoplasticity of the fluid implies optimal configurations very different from those predicted for Newtonian fluids.


Author(s):  
Eduardo S. S. Dutra ◽  
Moˆnica F. Naccache ◽  
Paulo R. Souza Mendes ◽  
Carlos A. O. Souto ◽  
Andre´ Leibsohn Martins ◽  
...  

In this work, flow of two adjacent fluids through annular eccentric tubes is analyzed numerically. This kind of flow is found in cementing processes of oil wells, where the cement paste pushes the drilling mud through annular space between the drilling column and the oil well wall. Both drilling mud and cement paste behave as non-Newtonian fluids, and between then a wash fluid is usually used, to avoid their contamination. The analysis of interface configuration between these fluids helps to determine contamination, and is an important tool for the process optimization. The numerical solution of the governing conservation equations is obtained via the finite volume technique and the volume of fluid method, using the Fluent software (Fluent Inc.). The effects of rheological parameters and eccentricity are investigated, for different flow rates. The results obtained show that the displacement is better when a more viscous fluid is used to push the other fluid. Also, it is observed that the interface shape is a function of flow regime and viscosities ratio. However, it is insensitive to eccentricity.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sergio L. D. Kfuri ◽  
Edson J. Soares ◽  
Roney L. Thompson ◽  
Renato N. Siqueira

Industrial processes with non-Newtonian fluids are common in many segments such as petroleum, cosmetic, and food industries. Slurries, emulsions, and gas–liquid dispersions are some examples with industrial relevance. When a fluid flows in a pipe system, pressure losses are always present. For Newtonian fluids, a quite reasonable understanding of this phenomenon was already achieved and is available in the literature. The same cannot be stated for non-Newtonian fluids owing to their complex characteristics, such as pseudoplasticity, viscoplasticity, elasticity, and thixotropy. The understanding of the influence of these characteristics on flow behavior is very important in order to design efficient pipeline systems. The design of such systems requires the estimation of the pressure drop due to friction effects. However, there are few works regarding friction losses for non-Newtonian fluids in pipeline systems, making this task a difficult one. In this study, two classes of fluids are investigated and compared with the Newtonian results. The first category of fluids are the ones that exhibits pseudoplastic behavior and can be modeled as a power-law fluid, and the second category are the ones that possesses a yield stress and can be modeled as a Bingham fluid. Polyflow was used to compute the friction losses in both abrupt contractions and expansions laminar flow conditions. It shows that for the expansion cases, the aspect ratio affects more the local friction coefficients than for the contraction cases. The influence of the power index n on local friction losses is similar for both cases, abrupt contractions and abrupt expansions. At low Reynolds numbers, dilatant fluids present the lowest values of the friction coefficient, K, independent of geometry. At high Reynolds numbers, a reversal of the curves occurs, and the dilatant fluid presents larger values of K coefficient. For the cases investigated, there is also a Reynolds number in which all the curves exhibit the same value of K for any value of the power-law index. The effect of τy′ shows a different behavior between contractions and expansions. In the case of contractions, the material with the highest dimensionless yield stress has the highest K value. In the case of the expansions, the behavior is the opposite, i.e., the higher the yield stress, the lower is the values of the K coefficient. Equations for each accessory as a function of the rheological parameters of the fluid and the Reynolds number of the flow are also proposed. The data were adjusted according to two main equations: the two Ks method proposed by Hooper (1981, “The Two-K Method Predicts Head Losses in Pipe Fittings,” Chem. Eng., 81, pp. 96–100.) is used for all the contractions cases, and the equation proposed by Oliveira et al. (1997, “A General Correlation for the Local Coefficient in Newtonian Axisymmetric Sudden Expansions,” Int. J. Heat Fluid Flow, 19(6), pp. 655–660.) is used for all the expansions cases. The equations found were compared with the numerical results and showed satisfactory precision and thus can be used for engineering applications.


Author(s):  
Irina Trifonova ◽  
Julia Rodicheva ◽  
Anna Sheveleva ◽  
Vladimir Burmistrov ◽  
Oscar Koifman

The flotator Oxal, mixture of dioxane ethers and alcohols as well as 1, 2 and 3 atomic alcohols, has been studied as a plasticizer for suspension PVC in comparison with the well-known dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DOP). The rheological parameters and gelation ability of plasticizers were determined, the values of the storage modulus and tangent of mechanical loss angle in the glassy and rubbery states were measured by the DMA method, and the glass transition temperatures were determined. The deformation-strength properties and rigidity of polymer films were tested before and after light-thermal aging. Oxal was shown to reveal a fairly low viscosity and high gelation properties in relation to PVC. At the same time, its ability to reduce the glass transition temperature and elasticize the polymer in the glassy and rubbery state is somewhat lower than that of phthalate plasticizers. PVC samples plasticized with DBP have the highest resistance to light-thermal aging.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Jeffy John Philip ◽  
Joydeb Mukherjee ◽  
Sandip Sarkar ◽  
Sandip K. Saha

Abstract In this work, we aim to develop a mathematical model for capillary filling dynamics of electromagnetohydrodynamic flow of non-Newtonian fluids. An axially applied electric field and a transverse magnetic field are considered to elucidate the electromagnetohydrodynamic transport through the microcapillary. Assuming a non-Newtonian power-law obeying fluids, we analyze the transient evolution of the electromagnetohydrodynamic capillary positions by considering the magnitude of the total force balance via finite volume-based numerical formalism. We have highlighted the various rheological regimes in the horizontal capillary through a scaling analysis. For the Newtonian fluids, corresponding inviscid linear Washburn regime is also analyzed and compared with the power-law obeying fluids. Furthermore, we have also derived closed-form analytical expressions for the electromagnetohydrodynamic velocity, pressure gradient, and transient evolution of the capillary positions by using couple stress parameter model to characterize the fluid rheological behaviors. We perform a comparison test of the coupled stress parameter model with the results from the literature for a similar set of fluid rheological parameters. The comparison results are found to be in good agreement.


2014 ◽  
Vol 759 ◽  
pp. 701-738 ◽  
Author(s):  
Dieter Issler

AbstractThe bed entrainment rate in a gravity mass flow (GMF) is uniquely determined by the properties of the bed and the flow. In depth-averaging, however, critical information on the flow variables near the bed is lost and empirical assumptions usually are made instead. We study the interplay between bed and flow assuming a perfectly brittle bed, characterized by its shear strength ${\it\tau}_{c}$, and erosion along the bottom surface of the flow; frontal entrainment is neglected here. The brittleness assumption implies that the shear stress at the bed surface cannot exceed ${\it\tau}_{c}$. For quasi-stationary flows in a simplified setting, analytic solutions are found for Bingham and frictional–collisional (FC) fluids. Extending this theory to non-stationary flows requires some assumptions for the velocity profile. For the Bingham fluid, the profile of a ‘proxy’ quasi-stationary eroding flow is used; the rheological parameters are chosen to match the instantaneous velocity and shear-layer depth of the non-stationary flow. For the FC fluid, a two-parameter family of functions that closely match the profiles obtained in depth-resolved numerical simulations is assumed; the boundary conditions determine the instantaneous parameter values and allow computation of the erosion rate. Preliminary tests with the FC erosion formula incorporated in a simple slab model indicate that the non-stationary erosion formula matches the depth-resolved simulations asymptotically, but differs in the start-up phase. The non-stationary erosion formulae are valid only up to a limit velocity (and to a limit flow depth if there is Coulomb friction). This appears to mark the transition to another erosion regime – to be described by a different model – where chunks of bed material are intermittently ripped out and gradually entrained into the flow.


2016 ◽  
Vol 108 ◽  
pp. 126-138 ◽  
Author(s):  
Olga Mihailova ◽  
Denis O'Sullivan ◽  
Andy Ingram ◽  
Serafim Bakalis

Author(s):  
A A Zadorozhnyi ◽  
M P Remarchuk ◽  
A P Kovrevski ◽  
Y V Chovnyuk ◽  
S A Buhaievskyi

Sign in / Sign up

Export Citation Format

Share Document