scholarly journals CHANNEL ESTIMATION FIELD DESIGN FOR THE SINGLE CARRIER MODULATION IN IEEE 802.11AY

T-Comm ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 30-39
Author(s):  
Yaroslav Gagiev ◽  
◽  
Anastasia Aderkina ◽  

This paper describes structure of a channel estimation field for the single carrier (SC) modulation based on the IEEE 802.11ad standard supporting transmission of radio signals between devices with multiple antennas for transmission and reception (MIMO – Multiple Input Multiple Output). Channel estimation field design uses a developed set of reference sequences based on complementary Golay pairs having similar statistical characteristics. All sequences are orthogonal to each other and each complementary pair has a pair in the set with zero cross-correlation property between them. Usage of this property allows to cancel out interstream interference during channel estimation procedure. A key property of the developed set is a common hardware architecture for a generator and correlator. Proposed structure of the channel estimation field is flexible and can be extended to arbitrary number of spatial streams for transmission. To analyze influence of the proposed channel estimation field on system performance, dependence of packet error rate on signal to noise ratio (SNR) was simulated for MIMO configuration with two transmit and two receive antennas for real and ideal channel estimations. System performance is analyzed in two channel models: the line of sight channel and the Rayleigh channel corresponding to the best and worst case of the signal propagation. It was shown that degradation of the SNR operating points depending on a modulation-coding scheme is in range 0.6-1.1 dB for the line of sight channel model and 0.7-1.5 dB for the Rayleigh channel model. This solution is already adopted by the IEEE 802.11ay standardization group.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Gang Liu ◽  
Ming Zhang ◽  
Yaming Bo

The actions of a person holding a mobile device are not a static state but can be considered as a stochastic process since users can change the way they hold the device very frequently in a short time. The change in antenna inclination angles with the random actions will result in varied received signal intensity. However, very few studies and conventional channel models have been performed to capture the features. In this paper, the relationships between the statistical characteristics of the electric field and the antenna inclination angles are investigated and modeled based on a three-dimensional (3D) fast ray-tracing method considering both the diffraction and reflections, and the radiation patterns of an antenna with arbitrary inclination angles are deducted and included in the method. Two different conditions of the line-of-sight (LOS) and non-line-of-sight (NLOS) in the indoor environment are discussed. Furthermore, based on the statistical analysis, a semiempirical probability density function of antenna inclination angles is presented. Finally, a novel statistical channel model for stochastic antenna inclination angles is proposed, and the ergodic channel capacity is analyzed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Rongchen Sun ◽  
Cheng Tao ◽  
Liu Liu ◽  
Zhenhui Tan ◽  
Lingwen Zhang ◽  
...  

This paper presents the nonisotropic scattering characteristic of the mobile radio channel in an alternant tree-blocked viaduct scenario on high-speed railway (HSR) by real field measuring at 2.35 GHz. An angle of arrival (AOA) probability density function (PDF) is proposed for the nonuniform AOA at the mobile caused by stochastically distributed scatterers. Two Von Mises angular distributions with broad applicability are used to represent the line of sight (LOS) component and part of the scattering component in the AOA model. Based on such a PDF statistical characteristics of Ricean factor,κ, and AOA of the scattering component are modeled in LOS and obstructed line of sight (OLOS) cases, respectively. The results may give a meaningful and accurate channel model and could be utilized in HSR viaduct scenario evaluation.


2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 367 ◽  
Author(s):  
Pablo Palacios Játiva ◽  
Milton Román Cañizares ◽  
Cesar A. Azurdia-Meza ◽  
David Zabala-Blanco ◽  
Ali Dehghan Firoozabadi ◽  
...  

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 − 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.


Author(s):  
Xiuhua Fu ◽  
Tian Ding ◽  
Rongqun Peng ◽  
Cong Liu ◽  
Mohamed Cheriet

AbstractThis paper studies the communication problem between UAVs and cellular base stations in a 5G IoT scenario where multiple UAVs work together. We are dedicated to the uplink channel modeling and the performance analysis of the uplink transmission. In the channel model, we consider the impact of 3D distance and multi-UAVs reflection on wireless signal propagation. The 3D distance is used to calculate the path loss, which can better reflect the actual path loss. The power control factor is used to adjust the UAV's uplink transmit power to compensate for different propagation path losses, so as to achieve precise power control. This paper proposes a binary exponential power control algorithm suitable for 5G networked UAV transmitters and presents the entire power control process including the open-loop phase and the closed-loop phase. The effects of power control factors on coverage probability, spectrum efficiency and energy efficiency under different 3D distances are simulated and analyzed. The results show that the optimal power control factor can be found from the point of view of energy efficiency.


Author(s):  
Joonas Kokkoniemi ◽  
Janne Lehtomäki ◽  
Markku Juntti

AbstractThis paper documents a simple parametric polynomial line-of-sight channel model for 100–450 GHz band. The band comprises two popular beyond fifth generation (B5G) frequency bands, namely, the D band (110–170 GHz) and the low-THz band (around 275–325 GHz). The main focus herein is to derive a simple, compact, and accurate molecular absorption loss model for the 100–450 GHz band. The derived model relies on simple absorption line shape functions that are fitted to the actual response given by complex but exact database approach. The model is also reducible for particular sub-bands within the full range of 100–450 GHz, further simplifying the absorption loss estimate. The proposed model is shown to be very accurate by benchmarking it against the exact response and the similar models given by International Telecommunication Union Radio Communication Sector. The loss is shown to be within ±2 dBs from the exact response for one kilometer link in highly humid environment. Therefore, its accuracy is even much better in the case of usually considered shorter range future B5G wireless systems.


Author(s):  
F. J. Lopez-Martinez ◽  
L. Moreno-Pozas ◽  
U. Fernandez-Plazaola ◽  
J. F. Paris ◽  
E. Martos-Naya ◽  
...  

2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


Sign in / Sign up

Export Citation Format

Share Document