scholarly journals Physiological and Developmental Response of Selected Upland Rice Genotypes to Water and Nutrient Stress Condition

2019 ◽  
pp. 22-39
Author(s):  
Richard Odongo Magwanga ◽  
Joy Nyangasi Kirungu

Drought is a major challenge for all agricultural crops, but for rice, it is even more serious, because of its semi aquatic phylogenetic origins and the diversity of rice ecosystems and growing conditions. The most important source of climate-related risks for rice production in rain-fed areas is drought.Crop physiology has made a significant contribution to understanding the mechanisms underlying crop growth and development, and bridging the “phenotype gap” generated by the recent progress in genomics. The study aimed to determine growth and physiological response of IRAT 109 and Lemont to water deficit and fertilizer application. Plants were subjected to water nutrient stress treatment in the field. Water and fertilizer treatment were initiated at 42 days after sowing (das). Fertilizer treatment was applied at 60 Kgha-1N and 60 Kgha-1N+45 Kgha-1P. Morphological and physiological measurements were done at 21, 42, 63 and 84th das. Root sampling done during the periods, at depths of 0-10 cm, 10-20 cm, and 20-40 Cm. The soil moisture content had a significant effect and decreased with increasing water deficit. The plant height, plant biomass both shoots and root reduced with decreasing water content and nutrient load in the soil. Lemont was significantly affected and registered lower values for various growth indices compared to IRAT 109. The was significant reduction in yields between the two rice cultivars under drought stress condition, though IRAT 109 exhibited relatively higher yield index under drought stress condition, the improved performance could be attributed to its ability to escape drought stress due to its early maturing ability. Fertilizer application has a significant effect on yield and yield component in rice, thus the proper fertilizer application is a key in achieving good yield in rice production. The finding of this research will help farmers in adopting high precision fertilizer application to ensure a good yield. In addition, rice breeders can utilize IRAT109 in developing more resilient and highly adaptive rice cultivars.

2017 ◽  
Vol 1 (2) ◽  
pp. 69-77
Author(s):  
EDI PURWANTO ◽  
SAMANHUDI SAMANHUDI ◽  
YONIAR EFFENDI

Purwanto E, Samanhudi, Yoniar Effendi Y. 2017. Response of some upland rice varieties to drought stress. Trop Drylands 1: 69-77. The study aimed to examine the response of upland rice varieties at germination stage on several PEG (Polyethylene Glycol) 6000 concentration levels and to determine growth characteristics, physiological changes and yield of upland rice varieties under drought stress condition in a pot experiment. The study consisted of two experiments; the first was to study germination and early growth, and the second was to study the vegetative and generative growth of upland rice under drought stress condition. Experiments I and II were conducted in a completely randomized factorial design consisted of two factors and three replications. In experiments I, the first factor was upland rice variety comprised of 10 varieties and the second factor was PEG concentration consisted of four levels. In experiment II, the first factor was upland rice varieties that responded the best to drought stress in experiment I, and the second factor was the drought stress treatment consisted of moisture content at 100, 75, 50 and 25% field capacity. The research was conducted at the Laboratory of Plant Physiology and Biotechnology and the greenhouse of Faculty of Agriculture, Sebelas Maret University (UNS) Surakarta. The results showed that the germination and vigor index decreased with increasing levels of PEG concentration. PEG concentration of 25 g L-1 of water was the most optimum for screening drought resistant upland rice. In experiment I, Towuti, Situ Patengang, Kalimutu and Gajah Mungkur varieties showed the best response to drought stress. Increased intensity of drought stress resulted in a reduction of plant height, number of tillers, dry weight, relative growth rate, leaf area, number of grains hill-1, 1000 grain weight, dry grain weight hill-1 and root dry weight. The drought stress also caused an earlier flowering date and increased percentage of empty grain. Based on the dry grain weight hill-1, Towuti exhibited a higher drought resistance level than Gajah Mungkur, Situ Patenggang and Kalimutu.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 549-558 ◽  
Author(s):  
Ahmad Golparvar ◽  
Mohammad Gheisari ◽  
Davoud Naderi ◽  
Ali Mehrabi ◽  
Amin Hadipanah ◽  
...  

In order to evaluate and classify morphological and morpho-physiological traits of durum wheat genotypes in drought and irrigated conditions 200 durum wheat genotypes were sown in modify augmented design with four replications during 2013- 2014 farming season. Two replications were considered as drought condition and two as irrigated. Factor analysis based on principal component analysis method and varimax rotation indicated that four important factors accounted for about 87 and 92 percent of the total variation among traits in drought and irrigated conditions, respectively. In drought stress condition, the first factor assigned 37 percent of total variation between traits and was significantly related with spike yield and it?s components. Therefore, this factor was regarded as spike seed yield factor. Other factors in drought stress condition accounted for 22, 16 and 12 percent of variation between traits and were entitled as plant seed yield, spike density and assimilate transmission factors, respectively. In irrigated condition, the first factor assigned 36 percent of total variation between traits and was significantly related with traits plant and spike seed yield, plant and spike harvest index, No. seed/spike and plant height. This factor was regarded as plant seed yield factor. Other factors in irrigated condition accounted for 24, 18 and 14 percent of variation between traits and were entitled as production, assimilate transmission and spike density factors, respectively. Overall, results revealed effect of different environments on extracted factors, percent of variation accounted for by factors and traits related with each factor.


2021 ◽  
Vol 5 (2) ◽  
pp. 1208-1215
Author(s):  
Tuan Minh Nguy ◽  
Thang Thanh Tran ◽  
Huong Thanh Tran

In recent years, drought stress was strongly affected on the development and yield of tomatoes. There are increasing interests in the study of physiological transformations in adaption to stress in plants In this study, effects of drought stress (mannitol at different concentration) on the development of tomato shoot were studied. Morphological and physiological changes during the development of shoot under drought stress conditions were analyzed. Based on the analysis results, the combination of cytokinin and gibberellin was treated to increase the drought stress tolerance of plants. Results showed that mannitol at 20 g/L induced tomato drought stress. Shoot height, number of leaves, leaf area, and the number of roots significantly decreased in the drought stress condition compared to the control. The formation superoxide (O2-) and hydrogen peroxide (H2O2) occurred in the meristem, elongation region and cap of the roots in the drought stress condition instead of only cap root in the control. In the drought stress condition, there was an increase in respiration intensity, proline and carotenoid content, and abscisic acid activity. In contrast, the content of chlorophyll, photosynthesis intensity, cytokinin and gibberellin activity decreased in comparison with the control. The combination treatment of zeatin 0.5 mg/L and GA3 0.5 mg/L improved the drought stress tolerance of plants. The shoot height, number of leaves, leaf area and number of roots of the treated plants were higher than those of the control plants.


2019 ◽  
Vol 56 (2) ◽  
pp. 218-226
Author(s):  
Jiana Chen ◽  
Min Huang ◽  
Fangbo Cao ◽  
Xiaohong Yin ◽  
Yingbin Zou

AbstractHigh-yielding short-duration cultivars are required due to the development of mechanized large-scale double-season rice (i.e. early- and late-season rice) production in China. The objective of this study was to identify whether existing early-season rice cultivars can be used as resources to select high-yielding, short-duration (less than 115 days) cultivars of machine-transplanted late-season rice. Field experiments were conducted in Yongan, Hunan Province, China in the early and late rice-growing seasons in 2015 and 2016. Eight early-season rice cultivars (Liangyou 6, Lingliangyou 211, Lingliangyou 268, Xiangzaoxian 32, Xiangzaoxian 42, Zhongjiazao 17, Zhongzao 39, and Zhuliangyou 819) with growth durations of less than 115 days were used in 2015, and four cultivars (Lingliangyou 268, Zhongjiazao 17, Zhongzao 39, and Zhuliangyou 819) with good yield performance in the late season in 2015 were grown in 2016. All cultivars had a growth duration of less than 110 days when grown in the late season in both years. Zhongjiazao 17 produced the maximum grain yield of 9.61 Mg ha−1 with a daily grain yield of 108 kg ha−1 d−1 in the late season in 2015. Averaged across both years, Lingliangyou 268 had the highest grain yield of 8.57 Mg ha−1 with a daily grain yield of 95 kg ha−1 d−1 in the late season. The good yield performance of the early-season rice cultivars grown in the late season was mainly attributable to higher apparent radiation use efficiency. Growth duration and grain yield of early-season rice cultivars grown in the late season were not significantly related to those grown in the early season. Our study suggests that it is feasible to select high-yielding short-duration cultivars from existing early-season rice cultivars for machine-transplanted late-season rice production. Special tests by growing alternative early-season rice cultivars in the late season should be done to determine their growth duration and grain yield for such selection.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Abhinav Jain ◽  
Padma Balaravi ◽  
Vinay Shenoy

AbstractThe progress in development and dissemination of drought tolerant lines has been slow as compared to the increasing drought prevalence in the rice growing regions. Significant amount of work has been done in the past on drought resistance traits in rice crop, still the benefit of improved drought tolerant rice cultivars reaching the farmer’s field is not very high and ways to expedite the development of drought tolerant and productive rice cultivars needs to be addressed. In this article, an assessment of easily practicable approach of managed stress screening and prospect of direct selection for yield under drought stress is discussed. Also the large effect yield QTLs identified for grain yield under drought stress field conditions is being reviewed for successful introgression into elite genetic background for developing drought tolerant cultivars with improved yield for the drought prone target environment.


Sign in / Sign up

Export Citation Format

Share Document