scholarly journals Experimental Study of the Effect of Continuous Surfactant Injection Alternating Cyclic Huff & Puff Stimulation on Oil Efficiency Recovery in A 3D Reservoir Physical Model

2019 ◽  
Vol 1 (2) ◽  
pp. 018-030 ◽  
Author(s):  
David Maurich

Surfactant can displace oil which trapped by capillary effect, make it easier to be produced and finally improve oil recovery factor. However, the effectiveness of surfactant injection depends on many parameters such as surfactant-reservoir fluids properties and interaction, reservoir characteristics and its interaction with surfactant and also surfactant injection scenario or operational methods. This paper discusses about the effect of continuous surfactant injection alternating huff & puff stimulation on oil recovery factor from a quadrant of five-spot pattern in a 3D physical model made from a mixture of sands, cement and water with dimension of 15 cm x 15 cm x 2.5 cm to serve as the surrogate for oil reservoir in laboratory. In order to simulate the oil recovery from a secondary waterflooding process, 0.17 PV of formation water was injected into 3D reservoir physical model. This process could recover about 25.5% OOIP from the physical model, however the injection then shortly terminated due to a drastically increase of watercut. Residual oil then be recovered by a sequence of continuous surfactant injection alternating huff and puff stimulation method. The recovery factor by continuous surfactant injection combine with chase water drive gave a 5.5 % OOIP additional recovery and another 6.8 % OOIP after 24 hours surfactant huff & puff stimulation in the first sequence. After conducting 3 series of a combination of continuous surfactant injection alternating huff & puff stimulation, the total oil recovery from overall processes was about 51.7% OOIP. We presume that the lack of mobility control on macroscopic sweep efficiency in a 3D reservoir physical model is the rationale behind this moderate oil recovery which only produced by surfactant microscopic displacement efficiency. Nevertheless, the research shows that the combination of continuous surfactant injection alternating huff & puff stimulation obviously improve the recovery factor to some extent.

2021 ◽  
Author(s):  
Songyan Li ◽  
Rui Han ◽  
Qun Wang ◽  
Xuemei Wei

Abstract Steam-assisted gravity drainage (SAGD) is an important method of heavy oil production, and the solvent vapor extraction (VAPEX) process is also an economically feasible, technically reliable, and environmentally friendly in situ heavy oil recovery method. In this paper, a microscopic visual flooding device was used to conduct seven groups of visual flooding experiments, including hot water, steam, liquid solvent and vapor solvent, at different temperatures. It can be directly observed that the residual oil in the hot water swept area is generally distributed in “spots”, “strips” and “clusters” of varying sizes. The residual oil after steam flooding generally has a “cluster” distribution, the residual oil after liquid solvent flooding has a “film” distribution, and there is only a little “spot” residual oil distributed after solvent vapor flooding. Additionally, we found that the sweep efficiency and displacement efficiency of hot water, steam and solvent increase with increasing temperature, and the sweep efficiency of hot water is higher than that of steam and liquid solvent. Vapor solvent has the greatest recovery factor, reaching approximately 90%. The experimental results hint at the future development trend of solvent injection and support the foundation of more general applications pertaining to the sustainable production of unconventional petroleum resources.


2021 ◽  
Author(s):  
Taniya Kar ◽  
Abbas Firoozabadi

Abstract Improved oil recovery in carbonate rocks through modified injection brine has been investigated extensively in recent years. Examples include low salinity waterflooding and surfactant injection for the purpose of residual oil reduction. Polymer addition to injection water for improvement of sweep efficiency enjoys field success. The effect of low salinity waterflooding is often marginal and it may even decrease recovery compared to seawater flooding. Polymer and surfactant injection are often effective (except at very high salinities and temperatures) but concentrations in the range of 5000 to 10000 ppm may make the processes expensive. We have recently suggested the idea of ultra-low concentration of surfactants at 100 ppm to decrease residual oil saturation from increased brine-oil interfacial elasticity. In this work, we investigate the synergistic effects of polymer injection for sweep efficiency and the surfactant for interfacial elasticity modification. The combined formulation achieves both sweep efficiency and residual oil reduction. A series of coreflood tests is performed on a carbonate rock using three crude oils and various injection brines: seawater and formation water with added surfactant and polymer. Both the surfactant and polymer are found to improve recovery at breakthrough via increase in oil-brine interfacial elasticity and injection brine viscosification, respectively. The synergy of surfactant and polymer mixed with seawater leads to higher viscosity and higher oil recovery. The overall oil recovery is found to be a strong function of oil-brine interfacial viscoelasticity with and without the surfactant and polymer in sea water and connate water injection.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Huiying Zhong ◽  
Qiuyuan Zang ◽  
Hongjun Yin ◽  
Huifen Xia

With the growing demand for oil energy and a decrease in the recoverable reserves of conventional oil, the development of viscous oil, bitumen, and shale oil is playing an important role in the oil industry. Bohai Bay in China is an offshore oilfield that was developed through polymer flooding process. This study investigated the pore-scale displacement of medium viscosity oil by hydrophobically associating water-soluble polymers and purely viscous glycerin solutions. The role and contribution of elasticity on medium oil recovery were revealed and determined. Comparing the residual oil distribution after polymer flooding with that after glycerin flooding at a dead end, the results showed that the residual oil interface exhibited an asymmetrical “U” shape owing to the elasticity behavior of the polymer. This phenomenon revealed the key of elasticity enhancing oil recovery. Comparing the results of polymer flooding with that of glycerin flooding at different water flooding sweep efficiency levels, it was shown that the ratio of elastic contribution on the oil displacement efficiency increased as the water flooding sweep efficiency decreased. Additionally, the experiments on polymers, glycerin solutions, and brines displacement medium viscosity oil based on a constant pressure gradient at the core scale were carried out. The results indicated that the elasticity of the polymer can further reduce the saturation of medium viscosity oil with the same number of capillaries. In this study, the elasticity effect on the medium viscosity oil interface and the elasticity contribution on the medium viscosity oil were specified and clarified. The results of this study are promising with regard to the design and optimum polymers applied in an oilfield and to an improvement in the recovery of medium viscosity oil.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Chuan Lu ◽  
Wei Zhao ◽  
Yongge Liu ◽  
Xiaohu Dong

Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2012 ◽  
Vol 594-597 ◽  
pp. 2451-2454
Author(s):  
Feng Lan Zhao ◽  
Ji Rui Hou ◽  
Shi Jun Huang

CO2is inclined to dissolve in crude oil in the reservoir condition and accordingly bring the changes in the crude oil composition, which will induce asphaltene deposition and following formation damage. In this paper, core flooding device is applied to study the effect of asphaltene deposition on flooding efficiency. From the flooding results, dissolution of CO2into oil leads to recovery increase because of crude oil viscosity reduction. But precipitated asphaltene particles may plug the pores and throats, which will make the flooding effects worse. Under the same experimental condition and with equivalent crude oil viscosity, the recovery of oil with higher proportion of precipitated asphaltene was relatively lower during the CO2flooding, so the asphltene precipitation would affect CO2displacement efficiSubscript textency and total oil recovery to some extent. Combination of static diffusion and dynamic oil flooding would provide basic parameters for further study of the CO2flooding mechanism and theoretical evidence for design of CO2flooding programs and forecasting of asphaltene deposition.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


2020 ◽  
Vol 60 (2) ◽  
pp. 662
Author(s):  
Saira ◽  
Furqan Le-Hussain

Oil recovery and CO2 storage related to CO2 enhance oil recovery are dependent on CO2 miscibility. In case of a depleted oil reservoir, reservoir pressure is not sufficient to achieve miscible or near-miscible condition. This extended abstract presents numerical studies to delineate the effect of alcohol-treated CO2 injection on enhancing miscibility, CO2 storage and oil recovery at immiscible and near-miscible conditions. A compositional reservoir simulator from Computer Modelling Group Ltd. was used to examine the effect of alcohol-treated CO2 on the recovery mechanism. A SPE-5 3D model was used to simulate oil recovery and CO2 storage at field scale for two sets of fluid pairs: (1) pure CO2 and decane and (2) alcohol-treated CO2 and decane. Alcohol-treated CO2 consisted of a mixture of 4 wt% of ethanol and 96 wt% of CO2. All simulations were run at constant temperature (70°C), whereas pressures were determined using a pressure-volume-temperature simulator for immiscible (1400 psi) and near-miscible (1780 psi) conditions. Simulation results reveal that alcohol-treated CO2 injection is found superior to pure CO2 injection in oil recovery (5–9%) and CO2 storage efficiency (4–6%). It shows that alcohol-treated CO2 improves CO2 sweep efficiency. However, improvement in sweep efficiency with alcohol-treated CO2 is more pronounced at higher pressures, whereas improvement in displacement efficiency is more pronounced at lower pressures. The proposed methodology has potential to enhance the feasibility of CO2 sequestration in depleted oil reservoirs and improve both displacement and sweep efficiency of CO2.


Author(s):  
Fengqi Tan ◽  
Changfu Xu ◽  
Yuliang Zhang ◽  
Gang Luo ◽  
Yukun Chen ◽  
...  

The special sedimentary environments of conglomerate reservoir lead to pore structure characteristics of complex modal, and the reservoir seepage system is mainly in the “sparse reticular-non reticular” flow pattern. As a result, the study on microscopic seepage mechanism of water flooding and polymer flooding and their differences becomes the complex part and key to enhance oil recovery. In this paper, the actual core samples from conglomerate reservoir in Karamay oilfield are selected as research objects to explore microscopic seepage mechanisms of water flooding and polymer flooding for hydrophilic rock as well as lipophilic rock by applying the Computed Tomography (CT) scanning technology. After that, the final oil recovery models of conglomerate reservoir are established in two displacement methods based on the influence analysis of oil displacement efficiency. Experimental results show that the seepage mechanisms of water flooding and polymer flooding for hydrophilic rock are all mainly “crawling” displacement along the rock surface while the weak lipophilic rocks are all mainly “inrushing” displacement along pore central. Due to the different seepage mechanisms among the water flooding and the polymer flooding, the residual oil remains in hydrophilic rock after water flooding process is mainly distributed in fine throats and pore interchange. These residual oil are cut into small droplets under the influence of polymer solution with stronger shearing drag effect. Then, those small droplets pass well through narrow throats and move forward along with the polymer solution flow, which makes enhancing oil recovery to be possible. The residual oil in weak lipophilic rock after water flooding mainly distributed on the rock particle surface and formed oil film and fine pore-throat. The polymer solution with stronger shear stress makes these oil films to carry away from particle surface in two ways such as bridge connection and forming oil silk. Because of the essential attributes differences between polymer solution and injection water solution, the impact of Complex Modal Pore Structure (CMPS) on the polymer solution displacement and seepage is much smaller than on water flooding solution. Therefore, for the two types of conglomerate rocks with different wettability, the pore structure is the main controlling factor of water flooding efficiency, while reservoir properties oil saturation, and other factors have smaller influence on flooding efficiency although the polymer flooding efficiency has a good correlation with remaining oil saturation after water flooding. Based on the analysis on oil displacement efficiency factors, the parameters of water flooding index and remaining oil saturation after water flooding are used to establish respectively calculation models of oil recovery in water flooding stage and polymer flooding stage for conglomerate reservoir. These models are able to calculate the oil recovery values of this area controlled by single well control, and further to determine the oil recovery of whole reservoir in different displacement stages by leveraging interpolation simulation methods, thereby providing more accurate geological parameters for the fine design of displacement oil program.


2019 ◽  
Vol 17 (3) ◽  
pp. 734-748 ◽  
Author(s):  
Ling-Zhi Hu ◽  
Lin Sun ◽  
Jin-Zhou Zhao ◽  
Peng Wei ◽  
Wan-Fen Pu

AbstractThe formation heterogeneity is considered as one of the major factors limiting the application of foam flooding. In this paper, influences of formation properties, such as permeability, permeability distribution, interlayer, sedimentary rhythm and 3D heterogeneity, on the mobility control capability and oil displacement efficiency of foam flooding, were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120 °C and salinity of 20 × 104 mg/L. The flow resistance of foam was promoted as the permeability increased, which thus resulted in a considerable oil recovery behavior. In the scenario of the vertical heterogeneous formations, it was observed that the permeability of the high-permeable layer was crucial to foam mobility control, and the positive rhythm appeared favorable to improve the foam flooding performance. The additional oil recovery increased to about 40%. The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved. For the 3D heterogeneous formations, foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation, and thus enhancing the oil recovery to 11%–14%. The results derived from this work may provide some insight for the field test designs of foam flooding.


Sign in / Sign up

Export Citation Format

Share Document