scholarly journals Determining the optimum fixed solar-shading device for minimizing the energy consumption of a side-lit office building in a hot climate

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Ali F. Alajmi ◽  
◽  
Faris Aba-alkhail ◽  
Adnan ALAnzi ◽  
◽  
...  

Buildings consume nearly 40% of the annual global energy consumption, with about 70% in hot climate regions. An efficient building design in every aspect is a crucial step towards minimizing such consumption. Windows system, including solar shading attachment, plays a pivotal role in designing a sustainable building. At the beginning, a survey of architectural firms was conducted to assess the current local practice of selecting the type and size of solar shading devices in different orientations. Regrettably, the survey outcomes did not consolidate the designers’ basis for choosing such solar shading devices. Therefore, the main aim of this study is to find the optimum solar shading type and size among the three most common types (simple overhang, louvers, and overhang/sided-fins) in each façade orientation (East, West, North, and South). The manipulated design parameters comprised the overhang projection from the wall base to half of the window’s height and sided-fins projection (from the wall base to half of the window’s width), as well as the overhang projection’s tilt angle (from 90° to 135°). The considered design parameters provide 4416 design options that were handled efficiently by using the simulation-based optimization technique (SBOT). The results showed that the overhang/sided-fins performed best in terms of reducing the total energy consumption in all orientations (13-28%), while louvers’ shading came second on all orientations by saving 10–21% except in the East, where the simple overhang showed slightly better performance by saving 22%. Recommended type and size for the solar shading in each orientation have been provided.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5836
Author(s):  
Ali Mohammed AL-Dossary ◽  
Daeung Danny Kim

In Saudi Arabia, residential buildings are one of the major contributors to total energy consumption. Even though there are abundant natural resources, it is somewhat difficult to apply them to building designs, as design variables, due to slow progress and private issues in Saudi Arabia. Thus, the present study demonstrated the development of sustainable residential building design by examining the daylighting and energy performance with design variables. Focusing on the daylighting system, the design variables were chosen, including window-to-wall ratios (WWR), external shading devices, and types of glazing. The illuminance level by these design variables in a building was evaluated by using daylight metrics, such as spatial daylight autonomy and annual sunlight exposure. Moreover, the building energy consumption with these design variables was analyzed by using energy simulation. As a result, the daylighting was improved with the increase in WWRs and the tinted double glazing, while these design options can cause overheating in a residential building. Among types of glazing, the double pane windows with a low-E coating showed better energy performance. Based on the results, it is necessary to find the proper design variables that can balance the daylighting and energy performance in residential buildings in hot climates.


Urban Science ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 85
Author(s):  
Shorouk Omar Elshiwihy ◽  
Hassam Nasarullah Chaudhry

Shading techniques constitute one of the most passive, beneficial strategies for reducing energy consumption in urban dwellings. Shading affects many factors, for example, the solar gains and radiations falling on the façade, which are considered the most significant in increasing the cooling energy demand in hot climates. This paper conducts a parametric study on external and internal shading devices and establishes their impact on energy consumption, daylight levels, and ventilation. The work was conducted using Integrated Environmental Simulation Virtual Environment (IES-VE) and Computational Fluid Dynamics (CFD) numerical methods. The results revealed that optimised shading can influence savings in terms of energy and cooling, in addition to the enhancement of daylighting and reduction of glare. After studying all these factors associated with the different shading techniques investigated, the findings revealed that all shades affect the energy, daylight and ventilation parameters positively. However, despite all external and internal shadings showing improvements, the egg crate shade was determined as that which provided the optimum energy saving, while enhancing daylight and improving natural ventilation for a sustainable building design.


2020 ◽  
Author(s):  
Csenge Dian ◽  
Attila Talamon ◽  
Rita Pongrácz ◽  
Judit Bartholy

<p>Climate change, extreme weather conditions, and local scale urban heat island (UHI) effect altogether have substantial impacts on people’s health and comfort. The urban population spends most of its time in buildings, therefore, it is important to examine the relationship between weather/climate conditions and indoor environment. The role of buildings is complex in this context. On the one hand UHI effect is mostly created by buildings and artificial surfaces. On the other hand they account for about 40% of energy consumption on European average. Since environmental protection requires increased energy efficiency, the ultimate goal from this perspective is to achieve nearly zero-energy buildings. When estimating energy consumption, daily average temperatures are taken into account. The design parameters (e.g. for heating systems) are determined using temperature-based criteria. However, due to climate change, these critical values are likely to change as well. Therefore, it is important to examine the temperature time series affecting the energy consumption of buildings. For the analysis focusing on the Carpathian region within central/eastern Europe, we used the daily average, minimum and maximum temperature time series of five Hungarian cities (i.e. Budapest, Debrecen, Szeged, Pécs and Szombathely). The main aim of this study is to investigate the effect of changing daily average temperatures and the rising extreme values on building design parameters, especially heating and cooling periods (including the length and average temperatures of such periods).</p>


2021 ◽  
Vol 6 (16) ◽  
pp. 93-102
Author(s):  
Muhammad Syukri Talip ◽  
Mariam Felani Shaari ◽  
Sabarinah Sh Ahmad ◽  
Ricardo B Sanchez

Daylighting has attracted increasing attention from researchers as an energy-efficient and sustainable building design technique. This research investigates the daylighting of atrium and courtyard building by comparing the performance of various Window to Wall Ratios (WWR) appropriate to Malaysia's tropical climate. The most acceptable option for daylight performance was to specify a moderate WWR value of 30% with shading devices. The results of The Radiance Daylighting Simulations confirmed the daylight performance by a comparison of calculated data and modelling. The findings show the combinations of daylighting parameters that work for courtyard and atrium buildings for the occupants' wellbeing. Keywords: Daylighting Performance, Courtyard, Atrium, Tropical, Radiance Simulations eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6i16.2710


Author(s):  
Junjie Liu ◽  
Xiaojie Zhou ◽  
Zhihong Gao

With the development of energy saving, it is needed to calculate the energy consumption of the residential building, particularly accurate dynamic energy consumption. Fixed shading devices are wildly used to save building energy because they prevent undesirable heat coming through the windows during the “overheated period”, just as in summer, which can ameliorate the indoor environments and reduce the energy consumption of air-conditioning in summer. But they will also prevent solar energy which can be used in winter to enter windows. So it is very important to be able to determine the optimal shading devices of windows. The overhangs and vertical-shading devices are representative to study the different energy performance in summer and winter, in an actual dwell house. On the other hand, fixed shading devices can weaken the effect of daylighting, so we would take both the total energy consumption and rooms’ daylighting into account. In this study, we choose several typical dwelling houses in different cities located in north, south, west, east and central region of China respectively. We calculated energy consumption of those models by using Energyplus program, and compared the shading performance of horizontal and vertical shading devices, then optimal configuration dimensions of horizontal shading devices are recommended on the basis of different requirements for solar heat gains in winter and in summer for those typical dwelling houses.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Seok-Hyun Kim ◽  
Kyung-Ju Shin ◽  
Hyo-Jun Kim ◽  
Young-Hum Cho

In South Korea, the evaluation criteria for installing shading devices are defined by regulations, but the standards of design methods are not clearly established. The installation of shading devices has become mandatory for some public buildings due to revised regulations. Therefore, a design of horizontal shading device is required, and indoor environmental problems which may occur due to their installation should also be taken into consideration. This research aimed to propose a design which takes into account the energy consumption which may occur if the horizontal shading device is installed and suggests an improved design method of horizontal shading devices when they are installed. Consequently, it was confirmed that as the protrusion of the horizontal shading device becomes longer, the incoming daylight is reduced and the indoor intensity of illumination becomes lower, and thus more lighting energy may be consumed in a room where the shading device is installed than in the one where it is not. Therefore, annual energy consumption was calculated by applying the lighting control and it was found that the total energy consumption decreased by the reduction of air-conditioning and fans and lighting energy consumption.


2022 ◽  
Vol 7 ◽  
Author(s):  
Nedhal Al-Tamimi

This study aims to assess passive design features through the extensive modifications of building envelopes to affect the energy efficiency of residential buildings in hot arid climates. In support of the aim of this research, the annual electric energy bill of a typical residential building in Sharurah was collected and analyzed. Then, the DesignBuilder simulation program was used to investigate how different modifications of building envelopes could affect the energy consumption of the residential buildings under common scenarios. Varied thermal insulation, different types of glass, shading devices, and green roof were investigated with this perspective. The simulation results show that thermal insulation can significantly reduce annual energy consumption by as high as 23.6%, followed by green roofs. In contrast, shading devices and glazing system types were fewer superiors. The results also indicate that the effective combination of certain strategies can reduce total energy consumption by 35.4% relative to the base case (BC) of this research.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Akash Samanta ◽  
Saibal Saha ◽  
Jhumoor Biswas ◽  
Arindam Dutta

The aim of this paper is to demonstrate the role of shading devices in the improvement of energy efficiency of buildings in hot dusty and dry tropical regions. The effect of shading in reducing the energy consumption of buildings is investigated by considering a case study of a guest house chosen because of its logical design approach to reduce thermal loads. The building plan, measurements, and details on schedules of building usage activities have been used as input data to a simulation program of the building. Based on the inputs, a thermal building model is developed in trnsys 17 simulation program and the effect of external shading on the building has been explored. It is seen that building design and orientation determine the effectiveness of shading. Movable shading over windows has a significant impact reducing temperatures by about 1.5 °C in each thermal zone. The difference in thermal energy loads of the building calculated from modeling simulations of the base case and the control case utilizing movable shading devices is approximately 8%. A programmable logic controllers (PLC)-based movable shading device has been designed to facilitate optimal shading control. The results enable us to draw inferences regarding the additional contribution of the shading factor in energy saving techniques for buildings.


2014 ◽  
Vol 70 (7) ◽  
Author(s):  
Ali Keyvanfar ◽  
Arezou Shafaghat ◽  
Mohd Zaimi Abd Majid ◽  
Hasanuddin Lamit ◽  
Kherun Nita Ali

Sustainable Building Assessment Tools have not yet measured the association between user satisfaction with adaptive behavior and energy efficiency. The current research aims to rectify this problem by testing the hypothesis that user satisfaction with adaptive behavior affects building energy consumption. To test the hypothesis, the staff’s overall satisfaction with adaptive behavior in response to tenant energy-efficiency features was used as the independent variable, while office unit energy consumption was used as the dependent variable. A set of conceptual variables and measured variables were identified for both the dependent and independent variables. A total of nine possible combinations of measured variables were investigated through a survey fielded in ten office units. The survey analysis determined that the building users are not satisfied with the tenant energy efficiency features and that they may adapt the indoor environment cooling and lighting qualities. An expert input study was conducted to validate the results with respect to the hypothesis. Seven experts who had experience in building assessments were invited to participate in the input study. Grounded group decision making analysis method confirmed the hypothesis testing results. The research results indicated that user adaptive behaviors directly affect building energy performance. Sustainable Building Assessment Tool developers along with energy efficient building design consultants and contractors could make use of these research findings.


Sign in / Sign up

Export Citation Format

Share Document