Characteristics of atmospheric air pollution by fine particles based on regional monitoring data

2021 ◽  
Vol 29 (6) ◽  
pp. 24-32
Author(s):  
Liliya Minvagizovna Fatkhutdinova ◽  
Gyuzel Abdulkhalimovna Timerbulatova ◽  
Evgeniy Pavlovich Bocharov ◽  
Elena Petrovna Sizova ◽  
Gulnaz Faezovna Gabidinova ◽  
...  

Introduction. Air pollution with particulate matter (PM) is a serious global problem. In the Russian Federation, regular field measurements of PMs in the ambient air are carried out only in a few cities, and the data, as a rule, are not systematized. Aim of the study: long-term analysis of the data set on concentrations of fine particles in the ambient air of the city of Kazan. Material and methods. Long-term analysis of ambient air pollution by fine particles in the city of Kazan for the period from 2016 to 2020 has been carried out. To study the effect of separate factors (year, measurement time during the day, climatic conditions, the presence of other pollutants) on the levels of PM10 and PM2.5, regression analysis was applied based on the method of mixed models. To characterize the elemental composition of the PM2.5 fraction, sampling of atmospheric air on PVC filters was carried out by use of 100 NR impactor (TSI, USA). The step function and MPPD model were applied to calculate the number of particles and the mass of the deposited fraction of fine particulate matter in different regions of the human respiratory tract. Results. The PM10 concentrations remained stable over a 5-year period, while the PM2.5 concentrations decreased. At the same time, an increase in the maximum annual concentrations of both fractions was observed. The concentrations of PM10 and PM2.5 significantly depended on climatic conditions. The presence of nitrogen oxides and organic carbon in the ambient air was significantly associated with higher concentrations of PM10 and PM2.5. The elemental composition of PM2.5 fraction was represented mainly by carbon (C) (from 86.16% to 93.45%). Mathematical modeling has shown that PM10 is mainly deposited in the upper respiratory tract, and their presence in the tracheobronchial and alveolar zones is insignificant. PM2.5 particles reach the lower respiratory tract and alveolar area. Conclusion. A statistically significant upward long-term trend in the maximum annual ambient concentrations for both fractions of fine particles can increase health risks. Secondary pollutants (nitrogen oxides, organic carbon) are important factors for the formation of secondary particles in the ambient air. The results obtained indicate that when assessing the risks to public health, it is necessary not only to use the concentrations of fine particles in ambient air, but also to consider the degree of deposition of separate fractions in different parts of the human respiratory tract, considering the alleged pathogenesis and priority target cells characteristic of individual diseases.

2012 ◽  
Vol 18 (4-2) ◽  
pp. 643-652 ◽  
Author(s):  
Visa Tasic ◽  
Novica Milosevic ◽  
Renata Kovacevic ◽  
Milena Jovasevic-Stojanovic ◽  
Mile Dimitrijevic

While information on air pollution in the form of particulate matter (PM) has been monitored for longer period for EU countries, availability of PM data sets in the Western Balkan countries including the Republic of Serbia are still limited. Studies, related to the particulate pollution research, have been only carried out in the past several years. The main objective of this paper is to present PM levels measured in the ambient air in the surrounding settlements of the Copper Smelter Complex Bor. Also, one of the goals is a comparison of PM levels in the surrounding settlements with those measured in Bor town. The ambient levels of PM particles (PM10, PM2.5) were measured by automatic PM monitors at 4 nearby settlements: Slatina, Ostrelj, Krivelj and Brezonik in the time interval from 2005 to 2010. According to the measurement results, PM10 and PM2.5 levels in the ambient air were higher in the cold, heating, (October-March) than in the warm no heating period (April-September). The exceeding of the daily limit of PM10 and PM2.5 mass concentration levels was observed at all measuring points. A higher number of exceedances were detected in the cold period. The results indicate that there is a significant seasonal change in the level of fine particles at all measuring places in surroundings. In addition, the PM levels in Bor town are more influenced by the air pollution from the Copper Smelter Complex than settlements in the vicinity, where the PM concentrations were greatly influenced by the presence of domestic heating in the cold period.


2007 ◽  
Vol 60 (3-4) ◽  
pp. 173-177 ◽  
Author(s):  
Aleksandra Stankovic ◽  
Dragana Nikic ◽  
Maja Nikolic

Introduction. Ambient air pollution, particularly in densely populated urban areas, is a major risk factor for the health of the exposed population. The respiratory tract is the primary target for air pollutants. The aim of this study was to evaluate the effects of long-term exposure to air pollution and incidence of respiratory symptoms and diseases. Material and methods. Measurements of air pollutants: sulphur dioxide and soot particles, were carried out daily at the Institute of Public Health in Nis at two locations, in Nis and in Niska Banja, during the period 1999-2003. The Air Quality Index was calculated for both areas. The investigation included 654 women, nonsmokers, between 20-30 years of age, from two areas with different levels of common air pollutants. The prevalence of respiratory symptoms and diseases was determined on the basis of a modified WHO standard questionnaire completed by doctors. Results. The obtained results show that examinees from Nis had a statistically higher prevalence of some respiratory symptoms (cough with cold and phlegm) whereas women from Niska Banja had a statistically significantly higher prevalence of lower respiratory tract diseases. Conclusion. Long-term exposure to low concentrations of air pollutants is a contributing factor to the development of respiratory symptoms and diseases.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Patrick D. M. C. Katoto ◽  
Amanda S. Brand ◽  
Buket Bakan ◽  
Paul Musa Obadia ◽  
Carsi Kuhangana ◽  
...  

Abstract Background Air pollution is one of the world’s leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. Methods We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. Results Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. Conclusion The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.


Author(s):  
Mona Elbarbary ◽  
Artem Oganesyan ◽  
Trenton Honda ◽  
Geoffrey Morgan ◽  
Yuming Guo ◽  
...  

There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
L Moderato ◽  
D Lazzeroni ◽  
A Biagi ◽  
T Spezzano ◽  
B Matrone ◽  
...  

Abstract Introduction Out-of-hospital cardiac arrest (OHCA) is a leading cause of death worldwide; it accounts for up to 50% of all cardiovascular deaths.It is well established that ambient air pollution triggers fatal and non-fatal cardiovascular events. However, the impact of air pollution on OHCA is still controversial. The objective of this study was to investigate the impact of short-term exposure to outdoor air pollutants on the incidence of OHCA in the urban area of Piacenza, Italy, one of the most polluted area in Europe. Methods From 01/01/2010 to 31/12/2017 day-by-day PM10 and PM2.5 levels, as well as climatic data, were extracted from Environmental Protection Agency (ARPA) local monitoring stations. OHCA were extracted from the prospective registry of Community-based automated external defibrillator Cardiac arrest “Progetto Vita”. OHCA data were included: audio recordings, event information and ECG tracings. Logistic regression analysis was used to estimate the association between the risk of OHC, expressed as odds ratios (OR), associated with the PM10 and PM2.5 levels. Results Mean PM10 levels were 33±29 μg/m3 and the safety threshold (50 μg/m3) recommended by both WHO and Italian legislation has been exceeded for 535 days (17.5%). Mean PM 5 levels were 33±29 μg/m3. During the follow-up period, 880 OHCA were recorded on 750 days; the remaining 2174 days without OHCA were used as control days. Mean age of OHCA patients was 76±15 years; male gender was prevalent (55% male vs 45% female; <0.001). Concentration of PM10 and PM 2.5 were significantly higher on days with the occurrence of OHCA (PM10 levels: 37.7±22 μg/m3 vs 32.7±19 μg/m3; p<0.001; PM 2.5 levels: 26±16 vs 22±15 p<0.001). Risk of OHCA was significantly increased with the progressive increase of PM10 (OR: 1.009, 95% CI 1.004–1.015; p<0.001) and PM2.5 levels (OR 1.012, 95% CI 1.007–1.017; p<0.001). Interestingly, the above mentioned results remain independent even when correct for external temperature or season (PM 2.5 levels: p=0.01 – PM 10 levels: p=0.002), Moreover, dividing PM10 values in quintiles, a 1.9 fold higher risk of cardiac arrest has been showed in the highest quintile (Highest quintile cut-off: <48μg/m3) Conclusions In large cohort of patients from a high pollution area, both PM10 and PM2.5 levels are associated with the risk of Out-of-hospital cardiac arrest. PM10 and PM2.5 levels and risk of OHCA Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 152 ◽  
pp. 106464 ◽  
Author(s):  
Shuo Liu ◽  
Youn-Hee Lim ◽  
Marie Pedersen ◽  
Jeanette T. Jørgensen ◽  
Heresh Amini ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222895 ◽  
Author(s):  
Han-Wei Zhang ◽  
Chao-Wen Lin ◽  
Victor C. Kok ◽  
Chun-Hung Tseng ◽  
Yuan-Pei Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document