scholarly journals The effects of air pollution on the frequency of respiratory symptoms in the population of Nis and Niska Banja

2007 ◽  
Vol 60 (3-4) ◽  
pp. 173-177 ◽  
Author(s):  
Aleksandra Stankovic ◽  
Dragana Nikic ◽  
Maja Nikolic

Introduction. Ambient air pollution, particularly in densely populated urban areas, is a major risk factor for the health of the exposed population. The respiratory tract is the primary target for air pollutants. The aim of this study was to evaluate the effects of long-term exposure to air pollution and incidence of respiratory symptoms and diseases. Material and methods. Measurements of air pollutants: sulphur dioxide and soot particles, were carried out daily at the Institute of Public Health in Nis at two locations, in Nis and in Niska Banja, during the period 1999-2003. The Air Quality Index was calculated for both areas. The investigation included 654 women, nonsmokers, between 20-30 years of age, from two areas with different levels of common air pollutants. The prevalence of respiratory symptoms and diseases was determined on the basis of a modified WHO standard questionnaire completed by doctors. Results. The obtained results show that examinees from Nis had a statistically higher prevalence of some respiratory symptoms (cough with cold and phlegm) whereas women from Niska Banja had a statistically significantly higher prevalence of lower respiratory tract diseases. Conclusion. Long-term exposure to low concentrations of air pollutants is a contributing factor to the development of respiratory symptoms and diseases.

1999 ◽  
Vol 159 (4) ◽  
pp. 1257-1266 ◽  
Author(s):  
ELIZABETH ZEMP ◽  
SERGE ELSASSER ◽  
CHRISTIAN SCHINDLER ◽  
NINO KÜNZLI ◽  
ANDRÉ P. PERRUCHOUD ◽  
...  

Author(s):  
Miao Huang ◽  
Jingyuan Chen ◽  
Yiping Yang ◽  
Hong Yuan ◽  
Zhijun Huang ◽  
...  

Background Previous studies have investigated the association of ambient air pollution with blood pressure (BP) in children and adolescents, however, the results are not consistent. We conducted a systematic review and meta‐analysis to assess the relationship between short‐term and long‐term ambient air pollutant exposure with BP values among children and adolescents. Methods and Results We searched PubMed, Web of Science, and Embase before September 6, 2020. Two reviewers independently searched and selected studies, extracted data, and assessed study quality. The studies were divided into groups by composition of air pollutants (NO 2 , particulate matter (PM) with diameter ≤10 μm or ≤2.5 μm) and length of exposure. The beta regression coefficients (β) and their 95% CIs were calculated to evaluate the strength of the effect with each 10 μg/m 3 increase in air pollutants. Out of 36 650 articles, 14 articles were included in this meta‐analysis. The meta‐analysis showed short‐term exposure to PM with diameter ≤10 μm (β=0.267; 95% CI, 0.033‒0.501) was significantly associated with elevated systolic BP values. In addition, long‐term exposure to PM with diameter ≤2.5 μm (β=1.809; 95% CI, 0.962‒2.655), PM with diameter ≤10 μm (β=0.526; 95% CI, 0.095‒0.958), and NO 2 (β=0.754; 95% CI, 0.541‒0.968) were associated with systolic BP values and long‐term exposure to PM with diameter ≤2.5 μm (β=0.931; 95% CI, 0.157‒1.705), and PM with diameter ≤10 μm (β=0.378; 95% CI, 0.022‒0.735) was associated with diastolic BP. Conclusions Our study indicates that both short‐term and long‐term exposure to some ambient air pollutants may increase BP values among children and adolescents.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Guozhang Xu ◽  
Donghuui Duan ◽  
Dingyun You ◽  
Jiaying Xu ◽  
Xiaoqi Feng ◽  
...  

Introduction: Epidemiological evidence on long-term exposure to ambient air pollution and type 2 diabetes (T2D) incidence are sparse, and the results are contradictory. Hypothesis: We performed a time-series analysis to investigate potential association between long-term exposure to ambient air pollution and T2D incidence in the Chinese population. Methods: Monthly time-series data between 2008-2015 on ambient air pollutants and incident T2D were obtained from the Environment Monitoring Center of Ningbo and the Chronic Disease Surveillance System of Ningbo. Relative risks (RRs) and 95% confidence intervals (95%CIs) of incident T2D per 10 μg/m 3 increase in ambient air pollutants were estimated from Poisson generalized additive models and adjusted for month, temperature, relative humidity, air pressure and wind speed. This model was combined with a distributed lag non-linear model to determine the relative risks. Main Outcome Measures: The main outcome measure was T2D incidence. Results: Long-term exposure to particulate matter <10 μm (PM10) and Sulphur dioxide (SO2) were associated with increased T2D incidence. The relative risks (RRs) of each increment in 10 μg/m 3 of PM10 and SO2 were 1.62 (95%CI, 1.16 to 2.28) and 1.63 (95%CI, 1.12 to 2.38) for overall participants, 1.56 (95%CI, 1.12 to 2.17) and 1.59 (95%CI, 1.14 to 2.23) for males, 1.68 (95%CI, 1.15 to 2.44) and 1.76 (95%CI, 1.21 to 2.56) for females, respectively. Whereas for ozone (O3) exposure, the RRs were 0.78 (95%CI, 0.68 to 0.90) for overall participants, 0.78 (95%CI, 0.69 to 0.90) for males, and 0.78 (95%CI, 0.67 to 0.91) for females, respectively. Female participants were more prone to develop T2D after long-term exposed to ambient air pollutants than male counterparts. No statistically significant associations were observed for PM2.5, NO2, and CO exposures, nor in the two- and three-pollutant models. Conclusions: Long-term exposure to PM10 and SO2 is positively associated with T2D incidence, whereas O3 is negatively associated with T2D incidence.


2005 ◽  
Vol 62 (7-8) ◽  
pp. 537-542 ◽  
Author(s):  
Dragana Nikic ◽  
Dusica Stojanovic ◽  
Maja Nikolic

Background. Epidemiological studies point out that air pollution in the cities was a major risk for health of the exposed population. In particular, the effects of air pollutants were adverse to the respiratory tract. In Nis and Niska Banja, the concentrations of pollutants were mainly below the threshold values. However, according to the literature, even these concentrations could exert negative effects, especially the health of the most sensitive group, such as the preschool children. The aim of our study was to evaluate the effects of the current levels of air pollutants in the city of Nis on respiratory symptoms and diseases. Methods. A pilot, cohort, retrospective study included 1 385 children of 1-5 years of age from the zones with statistically significant concentrations of air pollutants, in the period after the birth of the children. The prevalence of respiratory symptoms and diseases was determined on the basis of a modified WHO standard questionnaire completed by the parents. Results. It was revealed that in the more polluted of the studied zones, the prevalence of some respiratory symptoms (cough with cold and phlegm), and the lower respiratory tract diseases was significantly higher. Conclusion. The results of our study showed that the current concentrations of air pollutants in Nis and Niska Banja could represent the important etiological factor for the development of respiratory symptoms and diseases. Our study showed that in the children of up to 5 years of age, the frequency of respiratory symptoms and diseases was significantly higher in more polluted than in less polluted environments.


2020 ◽  
Author(s):  
Rashmi Yadav ◽  
Aditya Nagori ◽  
Aparna Mukherjee ◽  
Varinder Singh ◽  
Rakesh Lodha ◽  
...  

AbstractBackgroundData on the relation between the increase in ambient air pollution and acute respiratory illness in children are scarce. The present study aimed to explore the association between daily ambient air pollution and daily emergency room (ER) visits due to acute respiratory symptoms in children of Delhi.MethodsIn this epidemiological study, the daily counts of ER visits (ERV) of children (≤15 years) having acute respiratory symptoms from 1st June 2017 to 28th February 2019 were obtained from two general hospitals of Delhi. Simultaneously, data on daily average concentrations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), and ozone (O3), and weather variables were provided by Delhi Pollution Control Committee from their four continuous ambient air quality monitoring stations. We used K-means clustering with time-series approach to derive pollutant-derived clusters and the study period was categorized into high, moderate and low air pollution days. The combined effect of these air pollutants on acute respiratory ERV was assessed. Multi-pollutant generalized additive models (GAM) with Poisson link function was used to estimate the 0-6 day lagged change in daily ER visits with the change in multiple pollutants levels, adjusting for weather variables, days of the week and public holidays.ResultsIn 21 months, 132,029 children were screened at the ER of the participating hospitals. Of these 19,320 (14.6%) were eligible, and 19120 were enrolled with complete data collection. The study period could be divided into 3 pollutant-derived clusters with high (Cluster 1, 150 days), moderate (Cluster 2, 204 days) low (Cluster 3, 284 days) levels of air pollution. There was a 28.7% and 21% increase in ERV among children respectively, on high and moderate level pollution days (Cluster 1 and 2) compared to low pollution days (Cluster 3) on the same day of exposure to air pollutants. Similar results were found when the exposure to ambient air pollution of previous 1-6 days were taken into account. GAM analysis showed that the association of the acute respiratory ER visits with every 10 unit change of PM10, NO2, O3, CO and SO2 remained significant after adjusting for multi-pollutant and confounding variables effects. In contrast, no effect was seen for PM2.5. The ERVs for acute respiratory symptoms rose with increase in pollutants and the trends showed a percentage change (95% CI) 1.07% (0.32, 1.83) increase in ERVs for an increase of 10 micrograms per cubic meter of NO2 at previous day 1, 36.89% (12.24,66.95) for 10 milligrams per cubic meter of CO at previous day 3, and 12.77% (9.51, 16.12) for 10 micrograms per cubic meter of SO2 at same day while decrease of −0.18% (−0.32, - 0.03) for 10 micrograms per cubic meter of PM10 at same day, and −4.16 % (−5.18, −3.13) for O3 at previous day 3.ConclusionAn increase in the daily ER visits of children for acute respiratory symptoms was seen for 1-6 days after increase in daily ambient air pollution levels in Delhi.


2016 ◽  
Vol 49 (1) ◽  
pp. 1600206 ◽  
Author(s):  
Meriem Benmerad ◽  
Rémy Slama ◽  
Karine Botturi ◽  
Johanna Claustre ◽  
Antoine Roux ◽  
...  

An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO2), particulate matter with an aerodynamic cut-off diameter of x µm (PMx) and ozone (O3)) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (−2.56%, 95% CI −3.86–−1.25 for 5 µg·m−3of PM10; −0.75%, 95% CI −1.38–−0.12 for 2 µg·m−3of PM2.5and −2.58%, 95% CI −4.63–−0.53 for 10 µg·m−3of NO2). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM10was associated with lower FEV1.Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides.


2021 ◽  
Vol 13 (9) ◽  
pp. 4933
Author(s):  
Saimar Pervez ◽  
Ryuta Maruyama ◽  
Ayesha Riaz ◽  
Satoshi Nakai

Ambient air pollution and its exposure has been a worldwide issue and can increase the possibility of health risks especially in urban areas of developing countries having the mixture of different air pollution sources. With the increase in population, industrial development and economic prosperity, air pollution is one of the biggest concerns in Pakistan after the occurrence of recent smog episodes. The purpose of this study was to develop a land use regression (LUR) model to provide a better understanding of air exposure and to depict the spatial patterns of air pollutants within the city. Land use regression model was developed for Lahore city, Pakistan using the average seasonal concentration of NO2 and considering 22 potential predictor variables including road network, land use classification and local specific variable. Adjusted explained variance of the LUR models was highest for post-monsoon (77%), followed by monsoon (71%) and was lowest for pre-monsoon (70%). This is the first study conducted in Pakistan to explore the applicability of LUR model and hence will offer the application in other cities. The results of this study would also provide help in promoting epidemiological research in future.


Author(s):  
Mona Elbarbary ◽  
Artem Oganesyan ◽  
Trenton Honda ◽  
Geoffrey Morgan ◽  
Yuming Guo ◽  
...  

There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.


Sign in / Sign up

Export Citation Format

Share Document