Sugar beet syrups in lactic acid fermentation – Part I

2014 ◽  
pp. 495-502 ◽  
Author(s):  
Timo J. Koch ◽  
Joachim Venus ◽  
Martin Bruhns

Biotechnological production of lactic acid has been studied in various ways, e.g. microorganisms, fermentation processes, down-stream processes, fermentation substrates, and fermentation nutrients. The problems for all processes still are high costs for feedstock and fermentation nutrients. The objective of this study is a general evaluation of sugar beet thick juice from Pfeifer & Langen GmbH & Co. KG, Germany as a substrate for lactic acid production. In a series of fermentation experiments the results based on thick juice were comparable to those obtained using cane raw sugar and even better than using conventional corn starch as a fermentation subtrate. The most important findings for a later technical application are the high volumetric productivity (up to 5.5g·L–1·h–1), and the optical purity of the lactic acid (>99% ee l-LA).

2008 ◽  
Vol 75 (2) ◽  
pp. 462-467 ◽  
Author(s):  
Kenji Okano ◽  
Qiao Zhang ◽  
Satoru Shinkawa ◽  
Shogo Yoshida ◽  
Tsutomu Tanaka ◽  
...  

ABSTRACT In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch.


2014 ◽  
pp. 683-690 ◽  
Author(s):  
Timo J. Koch ◽  
Joachim Venus

Renewable feedstock gain increasing attention in a time of rising oil prices and uncertainty about security of supply. Often those alternative resources do have high prices and processing costs. Fermentation processes are still of major significance in biotechnological processes. Sourcing cheap raw materials is a task of agricultural businesses. Apart from feedstock costs, energy and nutrients show a great impact on process economics. This actual study explores the potential of sugar beet thick juice and raw juice to act in a bifunctional manner, either as substrate or nutrient. Key finding of this studies are that even in absence of additional nutrients with raw juice lactic acid yields of up to 51,5% compared to 13,5% with thick juice and 2,4% with crystalline sugar were obtained. Even with raw juice an enentoermic purity of l(+)-lactic acid >98% could be achieved. The analytical comparison shows that raw juice can provide significant share of amino acids of a typical yeast extract addition while crystalline sucrose shows no contribution.


2017 ◽  
Vol 66 (2) ◽  
pp. 273-276 ◽  
Author(s):  
Guoping Lv ◽  
Chengchuan Che ◽  
Li Li ◽  
Shujing Xu ◽  
Wanyi Guan ◽  
...  

The traditional CaCO3-based fermentation process generates huge amount of insoluble waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/l of D-lactic acid production and 0.89 g/g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/l betaine in the simple batch fermentation. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 494 ◽  
Author(s):  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Jeongho Lee ◽  
Seunghee Kim ◽  
Chulhwan Park ◽  
...  

Biorefinery, which utilizes carbon-neutral biomass as a resource, is attracting attention as a significant alternative in a modern society confronted with climate change. In this study, spent coffee grounds (SCGs) were used as the feedstock for lactic acid fermentation. In order to improve sugar conversion, alkali pretreatment was optimized by a statistical method, namely response surface methodology (RSM). The optimum conditions for the alkali pretreatment of SCGs were determined as follows: 75 °C, 3% potassium hydroxide (KOH) and a time of 2.8 h. The optimum conditions for enzymatic hydrolysis of pretreated SCGs were determined as follows: enzyme complex loading of 30-unit cellulase, 15-unit cellobiase and 50-unit mannanase per g biomass and a reaction time of 96 h. SCG hydrolysates were used as the carbon source for Lactobacillus cultivation, and the conversions of lactic acid by L. brevis ATCC 8287 and L. parabuchneri ATCC 49374 were 40.1% and 55.8%, respectively. Finally, the maximum lactic acid production by L. parabuchneri ATCC 49374 was estimated to be 101.2 g based on 1000 g of SCGs through the optimization of alkali pretreatment and enzymatic hydrolysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Chae Hwan Hong ◽  
Si Hwan Kim ◽  
Ji-Yeon Seo ◽  
Do Suck Han

Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereocomplex PLA, we developed the four unit processes, fermentation, separation, lactide conversion, and polymerization. Fermentation of sugars to D-lactic acid is little studied, and its microbial productivity is not well known. Therefore, we investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and we got a maximum lactic acid production 60 g/L. Lactide is prepared by a two-step process: first, the lactic acid is converted into oligo(lactic acid) by a polycondensation reaction; second, the oligo(lactic acid) is thermally depolymerized to form the cyclic lactide via an unzipping mechanism. Through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time 50% the level of the conventional method. Poly(L-lactide) was obtained from the ring-opening polymerization of L-lactide. We investigated various catalysts and polymerization conditions. Finally, we got the best catalyst system and the scale-up technology.


REAKTOR ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 79
Author(s):  
Abdullah Abdullah ◽  
H. B. Mat

The liquid pineapple waste contain mainly sucrose, glucose, fructose, and other nutrients. It therefore can potentiall be used as carbon source for organic acid fermentation. Recently, lactic acid has been considered to be an important raw material for production of biodegradadable lactace polymer. The experiments weree carried out in shake flash fermentation using lactobacillus delbroeckii. Effect of some parameters such as temperature, initial Ph, initial substrate concentration, yeast extract concentration and fermentation time to the yield have been studied. The highest yield was 85.65% achieved at 40 0C, PH 6.00, 52.2 g/l sugar concentration with 5 g/l yeast extract. There was no significant increasing in lactic acid production was observed if supplementation of yeast extract above 10%.Keyword : lactic acid fermentation, liquid pineapple waste, lactobacillus delbrueckii


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
WHINY HARDIYATI ERLIANA ◽  
Tri Widjaja ◽  
ALI ALTWAY ◽  
LILY PUDJIASTUTI

Abstract. Erliana WH, Widjaja T, Altway A, Pudjiastuti L. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Hydrolysis and fermentation studies. Biodiversitas 21: 2281-2288. The increasing problems of global energy and the environment are the main reasons for developing products with new techniques through green methods. Sugar palm trunk waste (SPTW) has potential as agricultural waste because of its abundant availability, but it is not used optimally. This study was aimed to determine the effect of various microorganisms on increasing lactic acid production by controlling pH and temperature conditions in the fermentation process. SPTW contains 43.88% cellulose, 7.24% hemicellulose, and 33.24% lignin. The lignin content in SPTW can inhibit reducing sugar formation; the pretreatment process should remove this content. In the study, the pretreatment process was conducted using acid-organosolv. In the acid pretreatment, 0.2 M H2SO4 was added at 120oC for 40 minutes; organosolv pretreatment using 30% ethanol (v/v) at 107oC for 33 minutes was able to increase cellulose content by 56.33% and decrease lignin content by 27.09%. The pretreatment was followed by an enzymatic hydrolysis process with a combination of commercial cellulase enzymes from Aspergillus niger (AN) and Trichoderma reesei (TR), with variations of 0:1, 1:0, 1:1, 1:2 and 2:1. The best reducing sugar concentration was obtained with an AN: TR ratio of 1:2 to form reducing sugar from cellulose. Subsequently, lactic acid fermentation was carried out using lactic acid bacteria at 37oC and pH 6 incubated for 48 hours. The highest lactic acid concentration (33.292 g/L) was obtained using a mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis to convert reducing sugar become lactic acid.


2018 ◽  
Vol 36 (No. 2) ◽  
pp. 146-153 ◽  
Author(s):  
Gharwalová Lucia ◽  
Paulová Leona ◽  
Patáková Petra ◽  
Branská Barbora ◽  
Melzoch Karel

Biotechnological production of lactic acid has experienced a boom that is hindered only by the lack of low-cost, abundant material that might be used as a substrate for lactic acid bacteria. Such material should contain not only carbon but also complex nitrogen sources, amino acids and vitamins necessary for the balanced growth of the bacteria. Here, for the first time, a combination of hydrolysates of wheat straw and chicken feathers was used as a complete waste cultivation medium for lactic acid production. It was shown to be a promising substrate for lactic acid production, reducing the medium price by 73% compared with MRS broth, providing more than 98% lactic acid yield and high productivity (2.28 ± 0.68 g/l/h) in a fed-batch process using Lactobacillus reuterii LHR14.


Author(s):  
Micaela G. Chacón ◽  
Christopher Ibenegbu ◽  
David J. Leak

Abstract Objective A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps—with the former working best at 50–55 °C and pH 4.5–5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. Results B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. Conclusion This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process.


Sign in / Sign up

Export Citation Format

Share Document