scholarly journals SKRINING FITOKIMIA, FORMULASI DAN UJI KARAKTERISTK FISIK SEDIAAN DOUBLE EMULSION BUAH KUPA KERING (SYZGIUM POLYCEPHALUM Merr )

2020 ◽  
pp. 8-14
Author(s):  
Dewi Fitriani Puspitasari ◽  
Amor Sofandi

  Penuaan kulit dapat menimbulkan perubahan estetika kulit. Perubahan estetika kulit disebakan oleh beberapa hal seperti xenobiotik, polutan, dan radiasi sinar ultraviolet yang dapat menyebabkan kerusakan oksidatif. Buah kupa merupakan buah yang mengandung senyawa antoxianin yang berfungsi sebagai antioksidan. Emulgel merupakan sediaan yang menjanjikan untuk digunakan secara topikal. Kelebihan dari sediaan emulgel mampu mencegah oksidasi senyawa aktif. Tujuan dari penelitian ini adalah untuk memformulasi dan menguji karakteristik fisik sediaan emulgel buah kupa.  Serbuk kering buah kupa yang disari dengan larutan HCl mampu menjaga terjadinya perubahan warna dari filtrat. Emulsi primer yang mengandung antoxianin selanjutnya didispersikan kedalam emulsi sekunder yang mengandung gelling agent.  Hasil formulasi menghasilkan karakteristik fisik sediaan emulgel yang baik, yakni memiliki daya sebar, daya lekat dan pH yang memenuhi persyaratan.

2020 ◽  
Vol 26 (26) ◽  
pp. 3147-3160
Author(s):  
Saeedeh Ahmadipour ◽  
Jaleh Varshosaz ◽  
Batool Hashemibeni ◽  
Leila Safaeian ◽  
Maziar Manshaei

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, POSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young’s modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34±0.44 Mpa and 12.57 N, respectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G4.5H1P0.03PRP10 formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelrite/Hydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.


2020 ◽  
Vol 21 (15) ◽  
pp. 1699-1710
Author(s):  
Sonsawan Kongpuckdee ◽  
Suwipa Ungphaiboon ◽  
Supreedee Sungkharak ◽  
Narubodee Phadoongsombut ◽  
Sirima Mahattanadul

Background: Oral inflammatory ulcers are one of the common complaints of patients attending out-patient clinics. Previous in vivo studies had shown that an Aqueous M. citrifolia Fruit Extract (AMFE) possessed anti-inflammatory and ulcer healing activities. Therefore, a standardized topical bioadhesive gel containing AMFE-phytosome was developed and determined for its oral ulcer healing efficacy in a rabbit model. Methods: The AMFE phytosome (AMFE-P) was prepared by a complexation method with the required amount of AMFE: Phosphatidylcholine: Tween 80 to weigh ratio of 2:1:0.2. Poloxamer 407 was used as a gelling agent. The oral ulcer was induced in male New Zealand white rabbits by topical application of acetic acid. Each test compound was applied to the ulcer for 10 days beginning on the second day after the ulcer induction. Complete ulcer healing on the specimen obtained on day 12 was observed histologically using the histological scoring protocol. Results: The optimized gel containing AMFE-P equivalent to AMFE 10%w/w (10%AMFE-P gel) showed the best bioadhesive gel quality, a smooth and homogeneous texture with an optimum viscosity and pH range used in human oral cavity, a good physical and chemical stability and the highest percentage cumulative release of total phenolic and scopoletin content. It was found that a daily application of 10% AMFE-P gel exerted a superior ulcer healing efficacy and a significantly rapid ulcer healing process than a twice daily application of topical gel containing AMFE 10%w/w or chlorhexidine 0.2%. Conclusion: These findings demonstrated that 10% AMFE-P gel has potential as a safe and effective alternative therapeutic agent for oral ulcers.


2020 ◽  
Vol 12 ◽  
Author(s):  
Shivani Verma ◽  
Sukhjinder Kaur ◽  
Lalit Kumar

Background: HQ is used for hyper-pigmentation treatment using conventional creams and gels. These formulations show various disadvantages like poor skin permeation, allergic reactions, and repeated use decreasing patient compliance. Objectives: The present work involved formulation, statistical optimization, and characterization of nanostructured lipid carriers (NLCs) for efficient topical delivery of hydroquinone (HQ) for hyperpigmentation treatment. Methods: The NLCs were optimized exploring Box–Behnken design (BBD) using three independent variables and two dependent variables. Formulation having the minimum size and maximum drug entrapment was considered as optimized formulation. Optimized formulation was evaluated for drug release followed by its freeze-drying. The freeze-dried formulation was subjected to differential scanning calorimetry (DSC) analysis, X-raydiffraction (XRD) analysis, and Fourier transform-infrared spectroscopy (FT-IR) analysis. Furthermore, NLCs based gel was prepared by using Carbopol 934 as a gelling agent. NLCs based gel was evaluated for skin permeation, skin retention, and skin distribution (through confocal microscopic analysis) using pig ear skin. Results: Optimized NLCs showed smaller particle size [(271.9 ± 9) nm], high drug entrapment [(66.4 ± 1.2) %], tolerable polydispersity index (PDI) (0.221 ± 0.012), and zeta potential [(-25.9± 1.2) mV]. The FT-IR analysis revealed excellent compatibility between HQ and other excipients. The Carbopol 934 gel containing NLCs showed high transdermal flux [(163 ± 16.2) μg/cm2/h], permeability coefficient (0.0326 ± 0.0016), and skin permeation enhancement ratio (3.7 ± 0.4) compared to marketed cream of HQ. The results of confocal microscopic (CLSM) analysis revealed the accumulation of optimized NLCs in the lower epidermal layers of skin. Conclusion: NLCs based gel was considered effective in the topical delivery of HQ to treat hyper-pigmentation due high skin permeation, skin retention, and prolonged release of HQ.


Author(s):  
AMOL SHETE ◽  
PRIYANKA THORAT ◽  
RAJENDRA DOIJAD ◽  
SACHIN SAJANE

Objective: The objectives of present investigation were to prepare and evaluate proniosomes of neomycin sulphate (NS) by coacervation phase separation method by using sorbitan monostearate (span 60) and lecithin as a surfactant to increase the penetration through the skin and study the effect of concentration of the same. Methods: Proniosomes of neomycin sulphate (NS) were prepared by coacervation phase separation method by using span 60 and lecithin. The effect of concentration of span 60 and lecithin was studied by factorial design. The prepared proniosomes were converted to gel by using carbopol as a gelling agent. The prepared formulations were evaluated for entrapment efficiency, in vitro drug diffusion, in vitro antibacterial activity and in vivo skin irritation test etc. Results: All Formulation showed the percentage entrapment efficiency in the range 38.31±0.05% to 77.96±0.06%, good homogeneity and gel was easily spreadable with minimal of shear. Optimized formulation showed enhanced rate of diffusion in vitro, increase in zone of inhibition against staphylococcus aureus, no skin irritation and showed good stability. Conclusion: The results of present study indicates that proniosomal gel formulated by using combination of span 60, Lecithin, cholesterol can be used to enhance skin delivery of NS because of excellent permeation of drug. Developed proniosomal gel formulation was promising carrier for NS


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kamlesh Wadher ◽  
Shital Dabre ◽  
Anjali Gaidhane ◽  
Sagar Trivedi ◽  
Milind Umekar

Abstract Background Pongamia pinnata (Fabaceae) is among those categories of plants mentioned in Ayurveda and traditionally known to use in several types of disease and disorders. The objective of the present work was to investigate the anti-psoriatic activity of Pongamia pinnata leaves extracts in Herbal gel formulation. Results Hydroalcoholic leaves extract of Pongamia pinnata was first subjected to phytochemical screening and quantification of phytoconstituents. Herbal gel was prepared containing Pongamia pinnata extracts using Carbopol 934 as gelling agent. The prepared gel formulations were studied for pH, viscosity, Spreadability and in vitro diffusion studies. The imiquimod-induced psoriatic mouse model, showed a prominent anti-psoriatic activity of the extract as evident through index grading. Treatment with extract confirmed a noteworthy reduction in psoriasis in the treated groups as there was a considerable diminution in the thickness and scaling of skin. Conclusions Lack of proper treatment and disadvantages associated with allopathic medicines pave the way to extensive research in natural products with anti-psoriatic activity. The present research scientifically justified the anti-psoriatic activity of the Hydroalcoholic extracts of Pongamia pinnata leaves.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1011
Author(s):  
Karishma Dhuri ◽  
Rutesh N. Vyas ◽  
Leslie Blumenfeld ◽  
Rajkumar Verma ◽  
Raman Bahal

Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.


2021 ◽  
Vol 14 (2) ◽  
pp. 164
Author(s):  
Iman M. Alfagih ◽  
Kan Kaneko ◽  
Nitesh K. Kunda ◽  
Fars Alanazi ◽  
Sarah R. Dennison ◽  
...  

In this study, PGA-co-PDL nanoparticles (NPs) encapsulating model antigen, bovine serum albumin (BSA), were prepared via double emulsion solvent evaporation. In addition, chitosan hydrochloride (CHL) was incorporated into the external phase of the emulsion solvent method, which resulted in surface adsorption onto the NPs to form hybrid cationic CHL NPs. The BSA encapsulated CHL NPs were encompassed into nanocomposite microcarriers (NCMPs) composed of l-leucine to produce CHL NPs/NCMPs via spray drying. The CHL NPs/NCMPs were investigated for in vitro aerosolization, release study, cell viability and uptake, and stability of protein structure. Hybrid cationic CHL NPs (CHL: 10 mg/mL) of particle size (480.2 ± 32.2 nm), charge (+14.2 ± 0.72 mV), and BSA loading (7.28 ± 1.3 µg/mg) were produced. The adsorption pattern was determined to follow the Freundlich model. Aerosolization of CHL NPs/NCMPs indicated fine particle fraction (FPF: 46.79 ± 11.21%) and mass median aerodynamic diameter (MMAD: 1.49 ± 0.29 µm). The BSA α-helical structure was maintained, after release from the CHL NPs/NCMPs, as indicated by circular dichroism. Furthermore, dendritic cells (DCs) and A549 cells showed good viability (≥70% at 2.5 mg/mL after 4–24 h exposure, respectively). Confocal microscopy and flow cytometry data showed hybrid cationic CHL NPs were successfully taken up by DCs within 1 h of incubation. The upregulation of CD40, CD86, and MHC-II cell surface markers indicated that the DCs were successfully activated by the hybrid cationic CHL NPs. These results suggest that the CHL NPs/NCMPs technology platform could potentially be used for the delivery of proteins to the lungs for immunostimulatory applications such as vaccines.


Sign in / Sign up

Export Citation Format

Share Document