scholarly journals Modeling the transport of radioactive pollution in the Ussuri Gulf during the first days after the nuclear accident in the Chazhma Bay in August 1985

Author(s):  
П.А. ФАЙМАН ◽  
М.В. БУДЯНСКИЙ ◽  
М.Ю. УЛЕЙСКИЙ ◽  
С.В. ПРАНЦ ◽  
В.Л. ВЫСОЦКИЙ ◽  
...  

Представлены результаты лагранжевого моделирования распространения радиоактивного загрязнения в Уссурийском заливе на различных горизонтах по глубине на основе численной региональной модели циркуляции ROMS с использованием эмпирических данных выпадения радиоактивных осадков из атмосферы на поверхность акватории в день аварии на атомной подводной лодке в бухте Чажма 10 августа 1985 г. Показано, что радиоактивное пятно могло оставаться в Уссурийском заливе в течение первых четырех суток после аварии. Установлено, что эволюция и деформация начального пятна загрязнения на разных горизонтах обусловлены влиянием вихрей разных полярностей и размеров (мезомасштабный циклон в центре залива, субмезомасштабный антициклон на севере и мезомасштабный антициклон на юге) и лагранжевых когерентных структур, связанных с гиперболическими точками в заливе. The results of Lagrangian modeling of the transport of radioactive pollution in the Ussuri Gulf at various depths based on a regional ROMS numerical model of circulation using the empirical data on the radioactive fallout from the atmosphere at the sea surface on the day of the accident at a nuclear submarine in the Chazhma Bay in August 10, 1985. It was shown that the radioactive particles remain in the Ussuri Gulf for the first 4 days after the accident. It has been shown that the evolution and deformation of the initial pollution patch on various horizons was influenced by vortices of different polarity and size in the Ussuri Gulf (a mesoscale cyclone in the center of the Gulf, a sub-mesoscale anticyclone in the north and a mesoscale anticyclone in the south) and by Lagrangian coherent structures connected with hyperbolic points in the Gulf.

2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 388
Author(s):  
Hao Cheng ◽  
Liang Sun ◽  
Jiagen Li

The extraction of physical information about the subsurface ocean from surface information obtained from satellite measurements is both important and challenging. We introduce a back-propagation neural network (BPNN) method to determine the subsurface temperature of the North Pacific Ocean by selecting the optimum input combination of sea surface parameters obtained from satellite measurements. In addition to sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS) and sea surface wind (SSW), we also included the sea surface velocity (SSV) as a new component in our study. This allowed us to partially resolve the non-linear subsurface dynamics associated with advection, which improved the estimated results, especially in regions with strong currents. The accuracy of the estimated results was verified with reprocessed observational datasets. Our results show that the BPNN model can accurately estimate the subsurface (upper 1000 m) temperature of the North Pacific Ocean. The corresponding mean square errors were 0.868 and 0.802 using four (SSH, SST, SSS and SSW) and five (SSH, SST, SSS, SSW and SSV) input parameters and the average coefficients of determination were 0.952 and 0.967, respectively. The input of the SSV in addition to the SSH, SST, SSS and SSW therefore has a positive impact on the BPNN model and helps to improve the accuracy of the estimation. This study provides important technical support for retrieving thermal information about the ocean interior from surface satellite remote sensing observations, which will help to expand the scope of satellite measurements of the ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ndague Diogoul ◽  
Patrice Brehmer ◽  
Hervé Demarcq ◽  
Salaheddine El Ayoubi ◽  
Abou Thiam ◽  
...  

AbstractThe resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (north and south of Cap Blanc), based on oceanographic regimes. We delineated two size-based groups (“plankton” and “pelagic fish”) corresponding to lower and higher trophic levels, respectively. Over the 20-year period, all spatial remote sensing environmental variables increased significantly, except in the area south of Cap Blanc where sea surface Chlorophyll-a concentrations declined and the upwelling favorable wind was stable. Relative index of marine pelagic abundance was higher in the south area compared to the north area of Cap Blanc. No significant latitudinal shift to the mass center was detected, regardless of trophic level. Relative pelagic abundance did not change, suggesting sCCLME pelagic organisms were able to adapt to changing environmental conditions. Despite strong annual variability and the presence of major stressors (overfishing, climate change), the marine pelagic ressources, mainly fish and plankton remained relatively stable over the two decades, advancing our understanding on the resistance of this east border upwelling system.


2021 ◽  
Vol 1885 (2) ◽  
pp. 022043
Author(s):  
Caodong Jiang ◽  
Liangchao Ma ◽  
Dongfeng Li ◽  
Hongwu Zhang ◽  
Zihao Li

2021 ◽  
Vol 13 (14) ◽  
pp. 2805
Author(s):  
Hongwei Sun ◽  
Junyu He ◽  
Yihui Chen ◽  
Boyu Zhao

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air–sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we used chlorophyll-a concentration (Chla), sea surface temperature (SST), dissolved and particulate detrital matter absorption coefficient (Adg), the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results showed that the root mean square error (RMSE) is 8.25 μatm, the mean bias error (MAE) is 4.92 μatm and the coefficient of determination (R2) can reach 0.946 in the validation set. Subsequently, the proposed algorithm was applied to the sea surface pCO2 in the North Atlantic Ocean during 2003–2020. It can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, through variance analysis and EOF (empirical orthogonal function) analysis, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, while it can also be influenced by biological activities in some sub-regions.


2009 ◽  
Vol 137 (8) ◽  
pp. 2559-2575 ◽  
Author(s):  
Burghard Brümmer ◽  
Gerd Müller ◽  
Gunnar Noer

Abstract During the Lofotes cyclone experiment (LOFZY 2005), two polar lows developed one behind the other inside a cold-air outbreak from the north in the lee of Spitsbergen on 7 March 2005. Buoys, ship, and aircraft measurements as well as satellite imagery are applied to analyze the polar low bulk properties, the horizontal and vertical structure, and the mass, moisture, and heat budget. The lifetime of the system until landfall at northern Norway was 12 h. The generation occurred under the left exit region of an upper-level jet with 70 m s−1. Both polar lows had a radius of 100–130 km and extended to a height of about 2.5 km. The propagation speeds were within 14–17 m s−1 and correspond to the vertically averaged wind velocity of the lowest 2.5 km. In the polar low centers the pressure was about 2–3 hPa lower and the air was 1–2 K warmer and drier than in the surroundings. Aircraft measurements in the second of the two polar lows show an embedded frontlike precipitation band north of the center. Here, the highest low-level winds with 25 m s−1 and the largest fluxes of sensible and latent heat with 290 and 520 W m−2, respectively, were measured (areal averages amounted to 115 and 190 W m−2). Aircraft data show mass convergence in the subcloud layer (0–900 m) and divergence in the cloud layer (900–2500 m). Moisture supply by evaporation from the sea surface was about twice as large as that by convergence in the subcloud layer. The condensation rate in the cloud layer nearly equaled the rate of evaporation at the sea surface. Almost all condensed cloud water was converted to precipitation water. Only half of the precipitation at the cloud base reached the sea surface.


Sign in / Sign up

Export Citation Format

Share Document