scholarly journals Defining the thermal conductivity of thermally heterogeneous hollow wall bricks used as elements for increasing the comfort of buildings

Author(s):  
Krzysztof PAWŁOWSKI ◽  
Maciej NIEDOSTATKIEWICZ

The article presents numerical calculation analysis in the scope of determining thermal conductivity coefficient λeq [W/(m·K)] of thermally heterogeneous hollow bricks of thermally heterogeneous structure (a combination of structural material with thermal insulation material). Numerical calculations were conducted by means of professional software TRISCO-KOBRU 86, serving thermal circulation analysis in a 2D field in stationary approach. The analyzed hollow wall bricks may be used, for instance, as a structural layer of layered outer walls of a building. In the article also the results of the Uc thermal conductivity coefficient calculations for double-layer walls with the use of the analyzed hollow wall bricks are presented in regard to thermal requirements.

2018 ◽  
Vol 251 ◽  
pp. 01011 ◽  
Author(s):  
Baiba Gaujena ◽  
Jelena Tihana ◽  
Anatolijs Borodinecs ◽  
Vladislavs Agapovs

This paper is devoted to analysis of insulation materials quality and characteristics, method for the determination of thermal conductivity coefficient and the influence of various factors on the thermal conductivity coefficient. The paper summarizes the estimated process consumption of thermal energy. The research is defined experimental hemp fiber-sheaves insulation plates manufactured in Latvia further specified actual parameter and quality water absorption; thickness changes; drying process; thermal conductivity coefficient; thermal conductivity coefficient depending from moisture. Research is made using experimental hemp fiber-sheaves insulation pattern manufactured in Latvia – plates in size 300 x 300 mm. In research totally are used three hemp fiber-sheaves pattern series with different substance and extrusion modes. Each series consist from four plate with different thickness. As result of research is determined hemp fiber-sheaves insulation pattern Water absorption, dynamics of Drying process, Thickness changes, Thermal conductivity coefficient and Thermal conductivity coefficient depending from moisture.


2012 ◽  
Vol 557-559 ◽  
pp. 835-838
Author(s):  
Yong Gang Li ◽  
Yang Dong Hu ◽  
Lian Ying Wu ◽  
Chun Li Yu

The effective thermal conductivity coefficient of silicon carbide (SiC) synthesis materials and graphitization furnace insulation material were obtained by applying heat percolation theory and thermal coefficient equation of various layer-compositors. This paper proposed a further numerical analysis on the temperature distribution of SiC furnace, lengthwise graphitization (LWG) furnace and Co-production furnace by open source finite element software FEPG. The results show that the Co-production furnace can produce SiC after finishing graphitization production and Co-production furnace’s energy consumption subtract energy consumption of LWG furnace, SiC production energy consumption of Co-production furnace is half and SiC yield of Co-production furnace is 57-73 percent of same type of SiC furnace. Besides, applying Co-production process could reduce the exhaust of whole LWG furnace.


2011 ◽  
Vol 306-307 ◽  
pp. 994-997
Author(s):  
Cong Cong Jiang ◽  
Guo Zhong Li ◽  
Shui Zhang

A cement-based foamed lightweight thermal insulation material was prepared with cement, industrial waste (fly ash, steel slag) as the main raw materials, by using self-developed composite activator and foaming agent. The influence of foam content on dry density, compressive strength and thermal conductivity coefficient of material was studied, the activation mechanism of composite activator to fly ash and steel slag was discussed. Results showed that, the dry density and compressive strength of material decreased, and thermal conductivity coefficient decreased first and then increased with the increasing foam content.


2021 ◽  
Vol 274 ◽  
pp. 07001
Author(s):  
Dmitriy Kraynov ◽  
Galina Medvedeva

A technology for the utilization of technogenic waste from the oil and gas industrial complex (sulfur) and ash and slag waste from the combined heat and power plant for the manufacture of thermal insulation material with high strength and performance properties has been developed. A technological scheme is proposed. The optimal parameters and composition of the obtained thermal insulation materials have been determined. A numerical method for determining the thermal conductivity coefficient of a building product based on the calculation of a stationary temperature field is considered. The dependence of the thermal conductivity coefficient of a block on the value of the thermal conductivity coefficients of the base material and filler is obtained. The efficiency of block insulation has been determined. This method can be used at the design stage of wall products, varying their overall dimensions, the geometry of the slots and also using various thermal insulating materials as a void filler.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


Author(s):  
Ahmed E Aboueregal ◽  
Hamid M Sedighi

The present contribution aims to address a problem of thermoviscoelasticity for the analysis of the transition temperature and thermal stresses in an infinitely circular annular cylinder. The inner surface is traction-free and subjected to thermal shock heating, while the outer surface is thermally insulated and free of traction. In this work, in contrast to the various problems in which the thermal conductivity coefficient is considered to be fixed, this parameter is assumed to be variable depending on the temperature change. The problem is studied by presenting a new generalized thermoelastic model of thermal conductivity described by the Moore–Gibson–Thompson equation. The new model can be constructed by incorporating the relaxation time thermal model with the Green–Naghdi type III model. The Laplace transformation technique is used to obtain the exact expressions for the radial displacement, temperature and the distributions of thermal stresses. The effects of angular velocity, viscous parameter, and variance in thermal properties are also displayed to explain the comparisons of the physical fields.


2007 ◽  
Vol 546-549 ◽  
pp. 1581-1584 ◽  
Author(s):  
Jiu Peng Zhao ◽  
Deng Teng Ge ◽  
Sai Lei Zhang ◽  
Xi Long Wei

Silica aerogel/epoxy composite, a kind of efficient thermal insulation material, was prepared by doping silica aerogel of different sizes into epoxy resin through thermocuring process. The results of thermal experiments showed that silica aerogel/epoxy composite had a lower thermal conductivity (0.105W/(m·k) at 60 wt% silica aerogel) and higher serviceability temperature (Martens heat distortion temperature: 160°C at 20 wt% silica aerogel). In addition, the composite doping larger size (0.2-2mm) of silica aerogel particle had lower thermal conductivity and higher Martens heat distortion temperature. Based on the results of SEM and FT-IR, the thermal transfer model was established. Thermal transfer mechanism and the reasons of higher Martens heat distortion temperature have been discussed respectively.


Sign in / Sign up

Export Citation Format

Share Document