Agrometeorological conditions and forecasting of grain crops yield based on the integration of ground and satellite data in the subjects of the Volga Federal District

2020 ◽  
Vol 3 ◽  
pp. 71-91
Author(s):  
A.I. Strashnaya ◽  
◽  
O.V. Bereza ◽  
A.A. Pavlova ◽  
◽  
...  

The analysis of the features of agrometeorological conditions in the subjects of the Volga Federal District revealed that the heat and moisture availability in the first half of the growing season (May-June) primarily affects the productivity of all grain crops. The dynamics of NDVI in the years with different moisture conditions is studied, and the average long-term dynamics of this index for winter and spring crops is determined for the weeks of vegetation. The possibility of using satellite information for forecasting grain crop yield is shown, and the periods of the most effective prediction are determined. Regression models are developed for predicting grain yield based on the integration of ground and satellite data. It is shown that the use of satellite data allows increasing the lead time of the crop yield forecast by one month. Keywords: agrometeorological conditions, drought, crops, yield, satellite data, forecast Tab. 3. Fig. 5. Ref. 21.

2021 ◽  
Vol 2 ◽  
pp. 110-137
Author(s):  
A.I. Strashnaya ◽  
◽  
O.V. Bereza ◽  
P.S. Klang ◽  
◽  
...  

Forecasting grain crop yield based on the integration of ground and satellite data in the subjects of the Southern Federal District / Strashnaya A.I.., Bereza O.V., Klang P.S. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 111-137. The results of research on the effect of agrometeorological conditions on the yield of grain and leguminous crops are presented. The role of farming culture in increasing productivity and the importance of meteorological factors in the yield variability are demonstrated. The frequency of droughts of various intensities in the subjects of the Southern Federal District in 2001–2020 is calculated as compared to 1981–2000. The NDVI vegetation index highly correlates with the grain crop yield. The average long-term dynamics of NDVI for the vegetation weeks is calculated, which allows assessing conditions for the yield formation in a particular year in comparison with the average long-term ones. The periods of the most effective use of NDVI in yield forecasts are determined. The developed regression models for yield forecasting based on the joint use of ground-based and satellite data are presented. Keywords: agrometeorological conditions, drought, grain crops, yield, satellite information, forecast


2017 ◽  
Vol 4 (2) ◽  
pp. 3-13 ◽  
Author(s):  
O. Tarariko ◽  
T. Ilienko ◽  
T. Kuchma ◽  
V. Velychko

Aim. To analyze and predict the climate change impact on the crop structure, yield and gross collections of grain crops in short-term (2025), mid-term (2050) and long-term perspective. Methods. Analysis of long-term series of climatic parameters based on satellite data, climatic modeling, statistical analysis of crop yield and gross collection of grain crops. Results. The positive effect of historical and current climate change on grain crop yields in Ukraine is demonstrated. It is predicted that the preservation of this pattern and the implementation of an integrated system of measures for adapting agroecosystems to warming will promote further increase in the grain crop yield and thus its gross collection. Conclusions. According to the analysis of satellite data and climatic models, further climate warming is predicted and its positive impact on grain crop productivity is forecasted. In case of developing and implementing the measures to adapt agroecosystems to climate change, the grain yield in Ukraine may increase by 25 % in 2025 compared with the current period (2015) and by 29–30 % in 2050; the gross collection of grain crops will reach 75.0 million tons (in 2025) and 79.0–80.0 million tons (in 2050). On condition of effi cient material and technical, scientifi c and informational support, further development of technical means, the reproduction of soil fertility and the improvement of irrigation technologies in the long-term perspective (by 2100), the gross grain collection may reach 92–95 million tons.


2019 ◽  
Vol 49 (2) ◽  
pp. 85-93 ◽  
Author(s):  
G. E. Chepurin ◽  
A. P. Tsegelnik

The paper presents substantiation of the rational use of combine harvesters’nominal throughput when threshing grain crops with the yield ranging from 0.8 to 5.0 t/ha and over. The main factors that determine nominal throughput of combine harvesters and their operational indicators are identified. The structure andcontents of thetechnological passport of combine harvesters are substantiated, and the algorithm of effective determination of their key operational indicators, based on the passport, are developed. These indicators depend on harvesting technology, grain crop yield, the share of non-grain part in the threshed grain bulk, the coverage of swath headers and direct-cut headers, and the operating speed of combine harvesters. The definition of the term “technological passport of the combine harvester” is given. Maximum and minimum allowable grain crop yield is established for the rational load of combine harvesters threshing at the standard operating speed of7.5 km/hrecommended by the Ministry of Agriculture of theRussian Federation. The existing methods make it possible to determine the operational efficiency of high-performance machinery by operational costs. However, they do not take into account the shortage of human resources when determining production cost of the threshed grain. As a result of the research conducted, the algorithm and techniques of determination of actual grain cost when harvesting grain crops by direct combining and swath harvesting methods are developed taking into account the need in combines of an i-class and combine operators. Production cost of grain threshed on the area of1000 hectarescalculated by the techniques developed, allows to define the minimum estimated and actual grain cost for an i-class combine harvester by direct combining and swath harvesting methods.


Author(s):  
Zekai Şen

In general, the techniques to predict drought include statistical regression, time series, stochastic (or probabilistic), and, lately, pattern recognition techniques. All of these techniques require that a quantitative variable be identified to define drought, with which to begin the process of prediction. In the case of agricultural drought, such a variable can be the yield (production per unit area) of the major crop in a region (Kumar, 1998; Boken, 2000). The crop yield in a year can be compared with its long-term average, and drought intensity can be classified as nil, mild, moderate, severe, or disastrous, based on the difference between the current yield and the average yield. Regression techniques estimate crop yields using yield-affecting variables. A comprehensive list of possible variables that affect yield is provided in chapter 1. Usually, the weather variables routinely available for a historical period that significantly affect the yield are included in a regression analysis. Regression techniques using weather data during a growing season produce short-term estimates (e.g., Sakamoto, 1978; Idso et al., 1979; Slabbers and Dunin, 1981; Diaz et al., 1983; Cordery and Graham, 1989; Walker, 1989; Toure et al., 1995; Kumar, 1998). Various researchers in different parts of the world (see other chapters) have developed drought indices that can also be included along with the weather variables to estimate crop yield. For example, Boken and Shaykewich (2002) modifed the Western Canada Wheat Yield Model (Walker, 1989) drought index using daily temperature and precipitation data and advanced very high resolution radiometer (AVHRR) satellite data. The modified model improved the predictive power of the wheat yield model significantly. Some satellite data-based variables that can be used to predict crop yield are described in chapters 5, 6, 9, 13, 19, and 28. The short-term estimates are available just before or around harvest time. But many times long-term estimates are required to predict drought for next year, so that long-term planning for dealing with the effects of drought can be initiated in time.


2021 ◽  
Author(s):  
Yu.B. Kirsta ◽  
A.V. Puzanov ◽  
T.A. Rozhdestvenskaya ◽  
M.P. Peleneva

Using the system approach, we have developed a simulation model for the long-term forecast of the content of toxic chemical elements in grain crop yield. The study was carried out by the example of wheat cultivated in Altai Krai — one of the main grain-producing regions of Russia. Wheat crops were sampled in 10 municipal districts of Altai Krai, which characterize seven different edaphic-climatic zones. The average long-term values of mean monthly air temperature and monthly precipitation for each sampling area were identified using GIS and data of the Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. A total of 19 chemical elements were considered, i.e. Pb, As, Cd, Hg, Na, Mn, Zn, Cu, Fe, Co, etc. It is shown that content of Pb, Na, Mn and Cu in wheat depend on climatic characteristics of the cultivation area. Regression dependences of element content on the average long-term air temperature and precipitation were established. Based on normalization and spatial generalization of air temperature and precipitation providing the uniform dynamics of their relative monthly values (in percent) throughout the study area, a forecast of their changes was made for 2030. A procedure for grain sampling, GIS technologies for processing meteorological and cartographic data, methods for predicting regional climate changes and establishment of quantitative relationships of chemical elements content in grain with climatic characteristics – all together make up the integral predictive simulation model for toxic substance content in grain crop yield. The model was used for estimation of Pb, Na, Mn, Cu changes in wheat by 2030. The lead (Pb) content in wheat crop delivered to elevators from certain municipal districts will exceed the maximum allowable concentration for breadgrain after 2030. Unlike Pb, Na, Mn, Cu, the content of other metals in wheat grain weakly correlate with long-term changes in air temperature and precipitation; therefore, it can hardly change significantly.


2007 ◽  
Vol 35 (2) ◽  
pp. 769-772 ◽  
Author(s):  
Attila Megyes ◽  
Tamás Rátonyi ◽  
Dénes Sulyok
Keyword(s):  

2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


Author(s):  
Ekaterina Shchurova ◽  
Ekaterina Shchurova ◽  
Rimma Stanichnaya ◽  
Rimma Stanichnaya ◽  
Sergey Stanichny ◽  
...  

Sivash bay is the shallow-water lagoon of the Azov Sea. Restricted water exchange and high evaporation form Sivash as the basin with very high salinity. This factor leads to different from the Azov Sea thermal and ice regimes of Sivash. Maine aim of the study presented to investigate recent state and changes of the characteristics and processes in the basin using satellite data. Landsat scanners TM, ETM+, OLI, TIRS together with MODIS and AVHRR were used. Additionally NOMADS NOAA and MERRA meteorological data were analyzed. The next topics are discussed in the work: 1. Changes of the sea surface temperature, ice regime and relation with salinity. 2. Coastal line transformation – long term and seasonal, wind impact. 3. Manifestation of the Azov waters intrusions through the Arabat spit, preferable wind conditions.


2018 ◽  
Vol 940 (10) ◽  
pp. 54-64 ◽  
Author(s):  
I.A. Belozertseva ◽  
A.A. Sorokovoj

On the basis of long-term researches of soils in the territory of Russia and Mongolia soil and ecological division into districts of the Baikal region is carried out. At division into districts the whole set of an environment of soil formation was considered. On the map of soil and ecological division into districts 13 mountain, mid-mountain, low-mountain taiga, foothill, hollow-valley, forest-steppe and steppe provinces reflecting surface device originality as the ratio of balance of heat and moisture forming a basis to zoning is shown against the background of difficult orography are allocated. In total 42 districts on lithologic-geomorphological features are allocated. In formation of distinctions of a soil cover of these provinces the leading role is played by bioclimatic factors and inside them the lithologic-geomorphological ones. In the view of structural approach of the district they are considered as territories with a certain natural change of several types of the soil cover structure caused by features of a relief and the parent rock. The map is made in the MapInfo program. It is revealed that on ill-defined width zoning of soils the vertical one which has a greater influence on soils of this region is imposed. Soils of the Baikal region are not similar to the soils located at the same latitude of the flat European territory of Russia. Zone soils of this territory are specific and original.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


Sign in / Sign up

Export Citation Format

Share Document