Overview of current and expected seasonal climatic anomalies for the winter 2021/2022 with their possible impact on the economy, as estimated by the meteorological services of the CIS countries

2021 ◽  
Vol 4 ◽  
pp. 163-176
Author(s):  
V.M. Khan ◽  
◽  

Based on assessments of the meteorological services of the CIS countries, the skill scores of the consensus forecast for the territory of Northern Eurasia for the summer of 2021 are presented. The results of monitoring circulation patterns in the stratosphere and troposphere over the past summer season are discussed. Climate monitoring and seasonal forecasting results for the current situation are presented. A probabilistic consensus forecast for air temperature and precipitation is presented for the upcoming winter season 2021/2022 in Northern Eurasia. Possible consequences of the impact of the expected anomalies of meteorological parameters on the economy sectors and social life are discussed. Keywords: North Eurasian Climate Forum, North Eurasian Climate Center, consensus forecast, air temperature, precipitation, large-scale atmospheric circulation, hydrodynamic models, sea surface temperature, impacts

2021 ◽  
Vol 2 ◽  
pp. 6-19
Author(s):  
V.M. Khan ◽  
◽  
R.M. Vilfand ◽  
E.V. Emelina ◽  
E.S. Kaverina ◽  
...  

Climatic features of the 2020/2021 winter season and the air temperature and precipitation outlook for the summer of 2021 over Northern Eurasia / Khan V.M., Vilfand R.M., Emelina E.V., Kaverina E.S., Kulikova I.A., Sumerova K.A., Tischenko V.A. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 6-19. The main features of the Northern Hemisphere large-scale atmospheric circulation are analyzed for the past 2020/2021 winter. The accuracy of consensus forecasts of air temperature and precipitation compiled during the work of the 19th session of the North Eurasian Climate Outlook Forum (NEACOF-19) is presented, with the skill scores of consensus forecasts for Northern Eurasia. The main features of the thermal state of the ocean and large-scale atmospheric circulation for the coming summer of 2021 are considered and analyzed. A forecast of surface air temperature and precipitation anomalies for the summer of 2021 agreed with the NEACOF-20 experts is formulated. Keywords: North Eurasian Climate Outlook Forum, North Eurasian Climate Center, consensus forecast, air temperature, precipitation, large-scale atmospheric circulation, hydrodynamic models, sea surface temperature


Author(s):  
R.M. Vilfand ◽  
◽  
K.A. Sumerova , ◽  
V.A. Tishchenko ◽  
V.M. Khan ◽  
...  

The main results of the analysis of the Northern Hemisphere large-scale atmospheric circulation features are presented for the 2020 summer. Skill scores of the consensus forecast for the 2020 Northern Eurasia summer are discussed in the context of analyzing the large-scale atmospheric circulation. The prognostic potential of the trend component in forecasting seasonal anomalies of air temperature and precipitation is noted. Keywords: air temperature, precipitation, forecast skill, trends, large-scale atmospheric circulation, sea surface temperature, NEACOF, circulation indices, Arctic ice


2005 ◽  
Vol 18 (16) ◽  
pp. 3217-3228 ◽  
Author(s):  
D. W. Shin ◽  
S. Cocke ◽  
T. E. LaRow ◽  
James J. O’Brien

Abstract The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air temperature and precipitation on the seasonal time scale, which is important for crop model application. Climatological and seasonal simulations with the FSU climate model coupled to the CLM2 (hereafter FSUCLM) are compared to those of the control (the FSU model with the original simple land surface treatment). The current version of the FSU model is known to have a cold bias in the temperature field and a wet bias in precipitation. The implementation of FSUCLM has reduced or eliminated this bias due to reduced latent heat flux and increased sensible heat flux. The role of the land model in seasonal simulations is shown to be more important during summertime than wintertime. An additional experiment that assimilates atmospheric forcings produces improved land-model initial conditions, which in turn reduces the biases further. The impact of various deep convective parameterizations is examined as well to further assess model performance. The land scheme plays a more important role than the convective scheme in simulations of surface air temperature. However, each convective scheme shows its own advantage over different geophysical locations in precipitation simulations.


2021 ◽  
Author(s):  
Elena Vyshkvarkova ◽  
Olga Sukhonos

Abstract The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018 during winter and spring. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices – cold/dry, cold/wet, warm/dry and warm/wet. Also, we studying the connection between these indices and large-scale processes in the ocean-atmosphere system such as North Atlantic Oscillation, East Atlantic Oscillation and Scandinavian Oscillation. The results have shown that positive trends in the region are typical of the combinations with the temperatures above the 75th percentile, i.e., the warm extremes in winter and spring. Negative trends were obtained for the cold extremes. Statistically significant increase in the number of days with warm extremes was observed in the northern parts of the region in winter and spring. The analysis of the impacts of the large-scale processes in oceans-atmosphere system showed that the North Atlantic Oscillation index has a strong positive and statistically significant correlation with the warm indices of compound extremes in the northern part of Eastern Europe in winter, while the Scandinavian Oscillation shows the opposite picture.


2021 ◽  
Author(s):  
Ondrej Hotovy ◽  
Michal Jenicek

<p>Seasonal snowpack significantly influences the catchment runoff and thus represents an important input for the hydrological cycle. Changes in the precipitation distribution and intensity, as well as a shift from snowfall to rain is expected in the future due to climate changes. As a result, rain-on-snow events, which are considered to be one of the main causes of floods in winter and spring, may occur more frequently. Heat from liquid precipitation constitutes one of the snowpack energy balance components. Consequently, snowmelt and runoff may be strongly affected by these temperature and precipitation changes.</p><p>The objective of this study is 1) to evaluate the frequency, inter-annual variability and extremity of rain-on-snow events in the past based on existing measurements together with an analysis of changes in the snowpack energy balance, and 2) to simulate the effect of predicted increase in air temperature on the occurrence of rain-on-snow events in the future. We selected 40 near-natural mountain catchments in Czechia with significant snow influence on runoff and with available long-time series (>35 years) of daily hydrological and meteorological variables. A semi-distributed conceptual model, HBV-light, was used to simulate the individual components of the water cycle at a catchment scale. The model was calibrated for each of study catchments by using 100 calibration trials which resulted in respective number of optimized parameter sets. The model performance was evaluated against observed runoff and snow water equivalent. Rain-on-snow events definition by threshold values for air temperature, snow depth, rain intensity and snow water equivalent decrease allowed us to analyze inter-annual variations and trends in rain-on-snow events during the study period 1965-2019 and to explain the role of different catchment attributes.</p><p>The preliminary results show that a significant change of rain-on-snow events related to increasing air temperature is not clearly evident. Since both air temperature and elevation seem to be an important rain-on-snow drivers, there is an increasing rain-on-snow events occurrence during winter season due to a decrease in snowfall fraction. In contrast, a decrease in total number of events was observed due to the shortening of the period with existing snow cover on the ground. Modelling approach also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.</p>


2019 ◽  
Vol 111 ◽  
pp. 03010
Author(s):  
Imrich Sánka ◽  
Dušan Petráš

This article investigates the impact of energy renovation on the indoor environmental quality of apartment building during heating season. The study was performed in one residential building before and after its renovation. Energy auditing and classification of the selected building into energy classes were carried out. Additionally, evaluation of indoor air quality was performed using objective measurements and subjective survey. Thermal environment and concentration of CO2 was measured in bedrooms. Higher concentrations of CO2 was observed in the residential building after its renovation. The concentrations of CO2, in some cases exceeded the recommended maximum limits, especially after implementing of energy saving measures on the building. The average air exchange rate was visible higher before renovation of the building. The current study indicates that large-scale of renovations may reduce the quality of the indoor environment in many apartments, especially in the winter season.


2020 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Leonard Borchert ◽  
Thomas Noël ◽  
...  

<p>Reliable climate predictions over a time-horizon of 1-10 year are crucial for stakeholders and policymakers, as it is the time span for relevant decisions of public and private for infrastructures and other business planning. This promoted, about a decade ago, the development of a new family of climate model: the Decadal Climate Predictions (DCP). Similarly to climate projections, the DCP consists in forced simulations of climate, but initialised from a specific observed climatic state, which potentially represents an added value. Being a relatively new branch of climate modelling the effective application of DCP to impact analysis supporting operational adaptation measures is still conditional on their evaluation.</p><p>Here we contribute to this evaluation by exploring the performance of the IPSL-CM5A-LR DCP system in predicting the air temperature over Europe.  Our assessment of the potentiality of the DCP system follows two main steps: (1) the comparison between the simulated large-scale air temperature from hindcasts and the observations from mid-1900 to present day, i.e. NOAA-20CR dataset, which defines a prediction skill, calculated through both the Anomaly Correlation Coefficient (ACC) and the Root Mean Square Error (RMSE); (2) the detection of the “windows of opportunity”, i.e. specific conditions under which the DCP performs better. The exploration of the windows of opportunity stems from a systematic detection that evaluates the DCP skills for each combination of periods, lead times and seasons. Our analysis involves both raw simulations and de-biased simulations, i.e. outputs data that have been adjusted through the quantile-quantile method.</p><p>Our results evidence a significant added value over most of Europe with respect to non-initialised historical simulations.  Significant skill scores have been generally found over the Mediterranean sector of Europe and UK, while the performance over the rest of Europe results rather conditional on the season and on the period considered. The best predicted months appear to be those between spring and autumn, while low skills have been found for winter months. Also, the predictions appear to be more performant after the ’80, when a rapid warming signal characterised the temperature over Europe: this shift is well reproduced in the initialised simulations. Finally, skill anomalies between raw and debiased outputs are generally minimal. Nevertheless, debiased data show an overall higher RMSE skill, while ACC skill appears to be slightly higher in winter and slightly lower in summer. These findings may be useful for the exploitation of the IPSL DCP for near-term timescale impact analysis over Europe. Also, our systematic approach for the exploration of the windows of opportunity may be at the base of similar investigations applied to other DCP systems.</p>


Author(s):  
O. V. Reshotkin

Aim. Identify patterns of temporal changes in the parameters of the atmospheric and soil climates of humid subtropics. Methods. The dynamics of air and soil temperature and precipitation are analyzed in the long-term and seasonal cycles with respect to the climatic normal, which is considered as a quantitative characteristic of the conditions of pedogenesis and climate variability over time. Results. The data on air temperature, precipitation and soil temperature yellow soils, formed in a subtropical wet-forest soil bioclimatic area are analyzed. It is shown that the average annual air temperature in 2001 - 2018 exceeded the climatic normal by 0,7°C, the annual precipitation increased by 104 mm. Modern warming leads to a change in the temperature regime of yellow soils. The average annual soil temperature at the beginning of the XXI century increased from 0,5°С at the depth of 320 cm to 0,9°С at the depth of 20 cm. The sum of active soil temperatures above 10°С at the depth of 20 cm increased by 283°С. Main conclusions. In the modern period, a change in the atmospheric and soil climate towards warming is observed in the zone of distribution of yellow soils of humid subtropics of Russia, accompanied by an increase in precipitation. Warming is most pronounced in the summer season and is practically not observed in the winter season. It is characterized by an increase in air and soil temperature throughout its profile, an increase in the sum of active temperatures. The revealed climate changes make it possible to re-evaluate the soil and agroclimatic resources of the Russian subtropics for agriculture and forestry.


During the grain growing months of May-July, the mean temperature on the Canadian prairies has cooled down by 2ºC in the last 30 years. The cooling appears to be most certainly linked to diminishing solar activity as the Sun approaches a Grand Solar Minimum in the next decade or so. This cooling has led to a reduction in Growing Degree Days (GDDs) and has also impacted the precipitation pattern. The GDDs in conjunction with mean temperature and precipitation are important parameters for the growth of various grains (wheat, barley, canola etc.) on the prairies. In this study, we investigate the impact of declining GDDs and associated temperature and precipitation patterns on Prairie grain yields and quality. Our analysis shows that there has been a loss of about 100 GDDs over the time frame of 1985-2019. The loss in GDDs is also linked to some of the large-scale Atmosphere-Ocean parameters like the Pacific Decadal Oscillation (PDO), North Pacific Index (NPI) and Arctic Oscillation (AO). Our analysis suggests grain yield and quality could be significantly impacted in the coming years as solar activity continues to diminish.


Sign in / Sign up

Export Citation Format

Share Document