SEQUENTIAL MONITORING OF DRINKING WATER QUALITY IN THE CITY OF BAIA SPRIE, MARAMUREŞ

Author(s):  
Valeria Mirela Brezoczki ◽  
Juhasz Jozsef ◽  

This paper presents the analysis of quality indicators for six surface water sources and two subterranean water sources at Baia Sprie, which are meant for domestic use. The period during which water quality was monitored covers three months (January, March and May 2018); during this period the control analyses of water quality were carried out in the laboratory of the Baia Mare Water treatment plant. The analysis of the results obtained highlighted a series of bacteriological indicators/parameters that were exceeded, as well as turbidity and hardness in the raw water from the catchments. The existence of colonies developed at 37°C and 22°C in the water requires a chemical treatment of this raw water with the aim of disinfecting it. The paper contains certain data regarding the need for water and the system for distributing drinkable water to consumers, the description of catchments and the subterranean water treatment technology required for meeting the sanitary conditions for rendering water drinkable, as well as the analysis of physical, chemical and bacteriological indicators obtained, compared to the legislation in force. The parameters of the thus rendered drinkable water match the values accepted through the legislation in force, the water being distributed to consumers through the Drinkable water distribution system in Baia Sprie.

Author(s):  
Valeria Mirela Brezoczki ◽  
◽  
Gabriela Maria Filip ◽  

This paper presents the analysis of quality indicators for two subterranean water sources, Suciu and Râoaia catchments, in Târgu Lapus, which are meant for domestic use. The period during which water quality was monitored covers two months (January and May 2018); during this period the control analyses of water quality were carried out in the laboratory of the Baia Mare Purification Station. The paper contains certain data regarding the need for water and the system for distributing drinkable water to consumers, the description of catchments and the subterranean water treatment technology required for meeting the sanitary conditions for rendering water drinkable, as well as the analysis of physical, chemical and bacteriological indicators obtained, compared to the legislation in force. The analysis of the results obtained highlighted a series of bacteriological indicators/parameters that were exceeded, as well as turbidity and hardness in the raw water from the subterranean catchments. The existence of colonies developed at 37 °C and 22°C in the raw water requires a chemical treatment of this water with the aim of disinfecting it. The parameters of the thus rendered drinkable water match the values accepted through the legislation in force, the water being distributed to consumers through the Drinkable water distribution system in Târgu Lăpuş.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 43-49 ◽  
Author(s):  
C-N. Chang ◽  
A. Chao ◽  
F-S. Lee ◽  
F-F. Zing

The objective of this study is to investigate how the molecular weight distribution of the organic substances affects their treatment efficiencies and the reduction of disinfection by-products (DBPs) in the various unit operations of a full-scale water treatment plant. The results indicate that the membrane with a smaller molecular weight cut-off is more effective for removing the organic substances and its associated water quality parameters from the raw water. For example, using the membrane with a molecular weight cut-off of 0.5 K (500 daltons), the removal efficiency of DOC from the raw water sample can be as high as 88%. Removal efficiencies of other water quality parameters such as UV254 absorbance, THMFP and AOXFP are generally between 65–69%. When undergoing the various unit operations in the conventional water treatment plant, most organic substances are removed in the coagulation process followed by sedimentation.


Author(s):  
Valeria Mirela Brezoczki ◽  
◽  
Gabriela Maria Filip ◽  

This paper presents the analysis of the quality indicator of a subterranean raw water source, captured in Crăciunesti, Sighetu Marmatiei, followed by the description of the technological flow of capturing and chlorinating water with the aim of making it drinkable, and the analysis of the obtained values of the physical, chemical and bacteriological indicators. The period within which water quality was monitored for this paper covers four months (December 2016, March, April and May 2017). Within this period the analyses regarding water quality control were carried out by the laboratory of the Water Treatment Baia Mare. The analysis of the obtained results highlighted a series of problems regarding the existence of certain indicators/parameters with values above the legally admissible threshold with regard to water quality. The manganese found in raw water exceeds the admissible threshold by 160%, in December 2016, and by 120% in March 2017, but it is within limits during the months of April and May. The occurrence of colonies developed at 37 °C and 22°C in the raw water requires chemical treatment of the raw water aimed at disinfecting it. The parameters of drinking water correspond to the values admissible through the laws in force, the water being distributed to the consumers through the Drinking water distribution system in Sighetu Marmatiei.


Author(s):  
Thomas Dippong ◽  
◽  
Cristina Mihali ◽  
Elena Cical ◽  
◽  
...  

This paper focuses on the evolution of quality indicators (pH, turbidity, oxidizability) of raw water in the Firiza-Strâmtori barrier lake, in between April 2015 - March 2016, in correlation with atmospheric precipitation quantities. pH, turbidity and oxidizability analyses were conducted in the time span of one year, tracking the evolution of these parameters in regards to the monthly quantity of atmospheric precipitations. For a comprehensive representation, the quality indicators of raw water, at the entrance and exit of the Baia Mare treatment plant, are also followed.


2016 ◽  
Vol 17 (2) ◽  
pp. 597-605
Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Xuewei Yang ◽  
Rui Huang ◽  
Qihao Zhou ◽  
...  

The overall purpose was to assess the feasibilities of recycling filter backwash water (FBWW) and combined filter backwash water (CFBWW) in a drinking water treatment plant in south China. The variations of regular water-quality indexes, metal indexes (Al, Mn and Cd), polyacrylamide and disinfection by-product indexes (trihalomethanes and their formation potentials) along with the treatment and the recycling processes were monitored. Results showed the recycling procedure caused increases of turbidity, total solids, ammonia nitrogen (NH3-N), permanganate index (CODMn), and dissolved organic carbon, Al, Mn and Cd concentrations in a mixture of raw water and FBWW or CFBWW compared to those in raw water. However, the recycling procedure had negligible impacts on the qualities of settled water and filtered water because most of the contaminants could be effectively removed by the conventional water treatment process. Although recycling did cause slight increases of NH3-N and CODMn levels in settled water and filtered water, the quality of finished water always conformed to Chinese standards for drinking water quality according to the surveyed indexes in the present study. Thus, it is appropriate to recycle waste streams in water-stressed areas if the source water is well managed and the water treatment processes are carefully conducted.


2019 ◽  
Vol 6 (2) ◽  
pp. 121-138
Author(s):  
Imad Ali Omar

Abstract: Water treatment plant (WTP) is essential for providing clean and safe water to the habitants. There is a necessity to evaluate the performance of (WTP) for proper treatment of raw water. The purpose of the present study is to evaluate the quality of treated water by investigating the performance of Ifraz-2 (WTP) units located in Erbil City, Iraq. For assessment of the (WTP) units, samples were taken for a duration of five months from different locations: raw water (the source), post-clarification processes, post-filtration processes, and from the storage tank. Removal efficiencies for the units, and for the whole (WTP) were calculated and presented. Obtained removal efficiencies for the sedimentation unit; filtration unit; and the entire Ifraz-2 (WTP) were 91.51 %, 64.71 %, and 97.29 %, respectively. After the process of disinfection and storage, the valued of the turbidity of the treated water were ranged from 1.2 to 9.7 (Nephelometric Turbidity Units) NTU. Besides, water quality index (WQI) for the (WTP) was studied and calculated for 14 physicochemical water quality parameters. WQI for Ifraz-2 (WTP) was 51.87 and it is regarded as a good level. Also, operational problems have been detected and reported during the research period, especially during sedimentation, filtration, and disinfection. Suitable solutions have been reported to the operational team.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Antonio Panico ◽  
Francesco Pirozzi

In this study, the use of acorn leaves as a natural coagulant to reduce raw water turbidity and globally improve drinking water quality was investigated. The raw water was collected from a drinking water treatment plant located in Mila (Algeria) with an initial turbidity of 13.0 ± 0.1 NTU. To obtain acorn leaf powder as a coagulant, the acorn leaves were previously cleaned, washed with tap water, dried, ground and then finely sieved. To improve the coagulant activity and, consequently, the turbidity removal efficiency, the fine powder was also preliminarily treated with different solvents, as follows, in order to extract the coagulant agent: (i) distilled water; (ii) solutions of NaCl (0.25; 0.5 and 1 M); (iii) solutions of NaOH (0.025; 0.05 and 0.1 M); and (iv) solutions of HCl (0.025; 0.05 and 0.1 M). Standard Jar Test assays were conducted to evaluate the performance of the coagulant in the different considered operational conditions. Results of the study indicated that at low turbidity (e.g., 13.0 ± 0.1 NTU), the raw acorn leaf powder and those treated with distilled water (DW) were able to decrease the turbidity to 3.69 ± 0.06 and 1.97 ± 0.03 NTU, respectively. The use of sodium chloride solution (AC-NaCl) at 0.5 M resulted in a high turbidity removal efficiency (91.07%) compared to solutions with different concentrations (0.25 and 1 M). Concerning solutions of sodium hydroxide (AC-NaOH) and hydrogen chloride (AC-HCl), the lowest final turbidities of 1.83 ± 0.13 and 0.92 ± 0.02 NTU were obtained when the concentrations of the solutions were set at 0.05 and 0.1 M, respectively. Finally, in this study, other water quality parameters, such as total alkalinity hardness, pH, electrical conductivity and organic matters content, were measured to assess the coagulant performance on drinking water treatment.


2014 ◽  
Vol 9 (3) ◽  
pp. 386-391 ◽  
Author(s):  
M. N. Dammo ◽  
A. Y. Sangodoyin

Water quality and supply are central to the socio-economic development of any nation. Scarcity of potable water results in the construction of dams and water treatment plants. Unfortunately, provision of potable water through improvement and treatment may prove to be difficult because of the socio-economic activities around a dam. This study is aimed at assessing the socio-economic activities around the Alau Dam Maiduguri, and how they affect the quality of raw water supply to Maiduguri Water Treatment Plant. The data was generated through the administration of questionnaires, and by interview and water quality analysis of dam and irrigation sites. The samples were subjected to physical, chemical and biological analysis to assess the impact of socio economic activities on the dam water, and its suitabilityfor drinking and agricultural uses. Findings reveal pollution with high concentration of nitrate (260–230 mg-NO3/l), phosphate (22–28 mg/l) and Escherichia coli (13–24 n/100 mg). This arose from improper sanitary management, inadequate public education on irrigation,indiscriminate waste disposaland some farming practices. Regular monitoring of socio-economic activities around the dam, and doing away with unhealthy waste disposal practices are recommended to safeguard the raw water supply to the treatment plant.


Author(s):  
Mohamed Deyab ◽  
Magda El-Adl ◽  
Fatma Ward ◽  
Eman Omar

Abstract This work aims to study the seasonal fluctuation in physicochemical characteristics, trophic status, and some pollutants influencing phytoplankton diversity, and water quality at a compact Kafr El-Shinawy drinking-water treatment plant, Damietta – Egypt seasonally during 2018. Phytoplankton distribution was affected by the trophic status of water, level of pollutants, and physicochemical treatment processes of water. The predominance of phytoplankton species, especially Aphanizomenon flos aquae (Cyanophyta), Gomphosphaeria lacustris (Cyanophyta), Microcystis aeruginosa (Cyanophyta), Nostoc punctiforme (Cyanophyta), Oscillatoria limnetica (Cyanophyta), Pediastrum simplex (Chlorophyta), and Melosira granulata (Bacillariophyta) in treated water was much less than that in raw water. Trihalomethanes (THMs) levels in treated waters were higher than in raw water, while lower concentrations of heavy metals were recorded in treated water. Intracellular levels of microcystins were lower, whereas the extracellular levels were higher in treated water than raw water, and the former recorded the highest level in raw water during summer. Hence, the levels of dissolved microcystins and THMs in treated water were higher especially during summer, the season of luxurious growth of Microcystis species. Trophic state index (TSI) was relatively high in raw water compared with treated water due to high concentrations of nutrients (total-P, total-N, nitrite, nitrate, and ammonia) in raw water.


Sign in / Sign up

Export Citation Format

Share Document