Chemical Properties of the Salt Crust Layer in Shelterbelts Under Drip Irrigation with Saline Water in a Mobile Desert

2010 ◽  
Vol 26 (2) ◽  
pp. 255-260
Author(s):  
Jian-guo ZHANG ◽  
Xin-wen XU ◽  
Jia-qiang LEI ◽  
Hai-feng WANG ◽  
Sheng-yu LI
2019 ◽  
Vol 223 ◽  
pp. 105696 ◽  
Author(s):  
Lili Zhangzhong ◽  
Peiling Yang ◽  
Wengang Zhen ◽  
Xin Zhang ◽  
Caiyuan Wang

2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Olorunwa Eric Omofunmi ◽  
Oluwaseun Ayodele Ilesanmi ◽  
Toluwalase Orisabinone

Experiment was carried out in the department of Agricultural and Bioresources Engineering, during the period of August to October, 2017. The hydraulic performance of a developed drip irrigation system was assessed. The experimental work was conducted on field with irrigated field area of 7 m x 3 m and lateral spacing was 0.35 m. Sixty (60) hospital drip sets (given sets) were used for the experiment as improved emitters. Volumetric method was used to determine application rate (PR) and emitters discharge. The emission uniformity, emitter flow variation, co-efficient of uniformity and co-efficient of variation were determined accordance with the equations described by the American Society of Agricultural Engineering (ASAE). Soil chemical properties were determined accordance with the American Public Health Association (APHA). The findings revealed that the soil in the area is classified as sand clay loam and normal soil. Results indicated that the mean and standard deviation of the emitters were 9.639 L/hr and 0.07 L/hr respectively. There were no emitters clogging. The emitter flow variation was 2.5 % and less than 10 % which was desirable range, while coefficient of variation was 0.07 and less than 0.11 which was marginal. The application rate was 17 mm hr-1 which was within the recommended range of 15 – 25 mm hr-1. The emission uniformity and coefficient of uniformity were 99.4% and 99.2% respectively, which shows that the system was well-designed. This finding indicated that hospital drip sets proved to the high quality. Therefore, it can be used as standard emitter.


2019 ◽  
Vol 111 (4) ◽  
pp. 2116-2127
Author(s):  
Xiulong Chen ◽  
Yaohu Kang ◽  
Shuqin Wan ◽  
Liping Guo

Author(s):  
Besma Kahlaoui ◽  
Mohamed Hachicha ◽  
Saloua Rejeb ◽  
Mohamed Néjib Rejeb

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1693
Author(s):  
Jingang Li ◽  
Jing Chen ◽  
Zhongyi Qu ◽  
Shaoli Wang ◽  
Pingru He ◽  
...  

Saline water irrigation has become extremely important in arid and semi-arid areas in northwestern China. To study the effect of alternating irrigation models on the soil nutrients, soil salts, and yield of tomatoes with fresh water (total dissolved solids of 0.50 g·L−1) and saline water (total dissolved solids of 3.01 g·L−1), a two-year field experiment was carried out for tomatoes in the Hetao Irrigation District (HID), containing six drip irrigation models: T1 (all freshwater irrigation), T2 (saline water used in the seedling and flowering stages; fresh water in the fruit-set and breaker stages), T3 (saline water in the flowering and fruit-set stages; fresh water in the seedling and breaker stages), T4 (saline water in the fruit-set and breaker stages; fresh water in the seedling and flowering stages), T5 (saline water in the flowering and breaker stages; fresh water in the seedling and fruit-set stages), T6 (saline water in the seedling and fruit-set stages; fresh water in the flowering and breaker stages). The study found that saline water irrigation tends to have a positive effect on soil total nitrogen and a negative influence on soil total phosphorus at each growth stage of the tomato. Soil Na+, Mg2+, Ca2+, K+, and Cl− increased over the growth period, soil HCO3− decreased gradually by growth stage, and the salt ions increased with the amount of saline water applied in alternating irrigation. Though the soil salt accumulated in all experimentally designed alternating irrigation models, soil alkalization did not occur in the tomato root zone under the soil matric potential threshold of −25 kPa. The utilization of saline water resulted in about a 1.9–18.2% decline in fruit yield, but the total soluble solids, lycopene, and sugar in the tomato fruits increased. Ultimately, drip irrigation with fresh water at the seedling to flowering stages and saline water at the fruit-set to breaker stages was suggested for tomato cultivation in HID.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 947 ◽  
Author(s):  
Abdu Y. Yimam ◽  
Tewodros T. Assefa ◽  
Nigus F. Adane ◽  
Seifu A. Tilahun ◽  
Manoj K. Jha ◽  
...  

A field experiment consists of conservation agriculture (CA) and conventional tillage (CT) practices were set up in two areas, Robit and Dangishta, in sub-humid Ethiopian highlands. Irrigation water use, soil moisture, and agronomic data were monitored, and laboratory testing was conducted for soil samples, which were collected from 0 to 40 cm depth before planting and after harvest during the study period of 2015–2017. Calculation of crop coefficient (Kc) revealed a significant decrease in Kc values under CA as compared to CT. The result depicted that CA with a drip irrigation system significantly (α = 0.05) reduced Kc values of crops as compared to CT. Specifically, 20% reductions were observed for onion, cabbage, and garlic under CA whereas 10% reductions were observed for pepper throughout the crop base period. Consequently, irrigation water measurement showed that about 18% to 28% of a significant irrigation water savings were observed for the range of vegetables under CA as compared to CT. On the other hand, the results of soil measurement showed the CA practice significantly (α = 0.05) increased soil moisture (4%, 7%, 8%, and 10% increment for onion, cabbage, garlic, pepper) than CT practice even if irrigation input was small in CA practice. In addition, CA was found to improve the soil physico-chemical properties with significant improvement on organic matter (10%), field capacity (4%), and total nitrogen (10%) in the Dangishta experimental site. CA with drip irrigation is evidenced to be an efficient water-saving technology while improving soil properties to support sustainable intensification in the region.


Sign in / Sign up

Export Citation Format

Share Document